Microstructure evolution of AS41 magnesium alloy fabricated by ultrasonic vibration

Zhiqiang Zhang , Qichi Le , Jianzhong Cui

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (5) : 820 -823.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (5) : 820 -823. DOI: 10.1007/s11595-010-0100-5
Article

Microstructure evolution of AS41 magnesium alloy fabricated by ultrasonic vibration

Author information +
History +
PDF

Abstract

The effects of ultrasonic vibration on the grain size and morphology of Mg2Si in Mg-4 wt% Al-1 wt%Si(AS41) alloys designed were evaluated. The results show that the major constituents of the alloy include β-Mg17Al12 and Mg2Si phase, and no difference in the type of constituents between without ultrasonic vibration and with ultrasonic vibration. Without any ultrasonic vibration, the grain size and Mg2Si phase in AS41 alloy are coare structure. However, the microstructure with fine uniform grains and Mg2Si particles are achieved with ultrasonic vibration. The crystal grains and Mg2Si particles refine with increase in the ultrasonic vibration intensity. When the ultrasonic vibration intensity was too low or too high, coarse structures could be obtained. The analysis of refinement mechanism indicates that the acoustic cavitation and flows induced by ultrasonic vibration lead to the fine uniform microstructure.

Keywords

magnesium alloy / ultrasonic vibration / microstructure

Cite this article

Download citation ▾
Zhiqiang Zhang, Qichi Le, Jianzhong Cui. Microstructure evolution of AS41 magnesium alloy fabricated by ultrasonic vibration. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(5): 820-823 DOI:10.1007/s11595-010-0100-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lu Y. Z., Wang Q. D., Ding W. J., . Fracture Behavior of AZ91 Magnesium Alloy[J]. Mater. Lett., 2000, 44: 265-268.

[2]

Kamado S., Koike J., Kondoh K., . Magnesium Research Trend in Japan[J]. Mater. Sci. Forum, 2003, 419–422: 21-34.

[3]

Magers D. M. A Gobal Review of Magnesium Parts in Automobiles[J]. Light Metal Age, 1996, 5: 60-62.

[4]

Mwembela A., Konopleva E. B., McQueen H. J. Microstructural Development in Mg Alloy AZ31 During Hot Working[ J]. Scripta Mater., 1997, 37: 1 789-1 795.

[5]

Mathis K., Trojanova Z., Lukac P. Hardening and Softening in Deformed Magnesium Alloys[J]. Mater. Sci. Eng. A, 2002, 324: 141-144.

[6]

Moreno I. P., Nandy T. K., Jones J. W., . Microstructural Stability and Creep of Rare-earth Containing Magnesium Alloys[J]. Scripta Mater., 2003, 48: 1 029-1 034.

[7]

Mordike B. L., Ebert T. Magnesium Properties Applications Potential[J]. Mater. Sci. Eng. A, 2001, 302: 37-45.

[8]

Kondoh K., Oginuma H., Aizama T. Tribological Properties of Magnesium Composite Alloy with In-situ Synthesized Mg2Si Dispersoids[J]. Metall. Trans., 2003, 44: 524-530.

[9]

Wang H. Y., Jiang Q. C., Ma B. X., . Modification of Mg2Si in Mg-Si Alloys with K2TiF6, KBF4 and KBF4 + K2TiF6[J]. J. Alloys Compd., 2005, 387: 105-108.

[10]

Wang L., Qin X. Y. The Effect of Mechanical Milling on the Formation of Nanocrystalline Mg2Si Through Solid-state Reaction[J]. Scripta Mater., 2003, 49: 243-248.

[11]

Kim J. J., Kim D. H., Shin K. S., . Modification of Mg2Si Morphology in Squeeze Cast Mg-Al-Zn-Si Alloys by Ca or P Addition[J]. Scripta Mater., 1999, 41: 333-340.

[12]

Yuan G. Y., Liu Z. L., Wang Q. D., . Microstructure Refinement of Mg-Al-Zn-Si alloys[J]. Mater. Lett., 2002, 56: 53-58.

[13]

Nam K. Y., Song D. H., Lee C. W., . Modification of Mg2Si Morphology in As-cast Mg-Al-Si Alloys with Srontium and Antimony[J]. Mater. Sci. Forum, 2006, 510–511: 238-241.

[14]

Eskin G. I. Ultrasonic Treatment of Light Alloy Melts[M], 1998 Amsterdam Gordon & Breach

[15]

Jian X., Meek T., Han Q. Refinement of Eutectic Silicon Phase of Aluminum A356 Alloy Using High-intensity Ultrasonic Vibration[J]. Scripta Mater., 2006, 54: 893-896.

[16]

Abramov V., Abramov O., Bulgakov V., . Solidification of Aluminium Alloys Under Ultrasonic Irradiation Using Water-cooled Resonator[J]. Mater. Lett., 1998, 37: 27-34.

[17]

Abramov V. O., Abramov O. V., Straumal B. B., . Hypereutectic Al-Si Based Alloys with a Thixotropic Microstructure Produced by Ultrasonic Treatment[J]. Mater. & Design, 1997, 18: 323-326.

[18]

Eskin G. I., Pimenov Y. P., Makarov G. S. Effect of Cavitation Melt Treatment on the Structure Refinement and Property Improvement in Cast and Deformed Hypereutectic Al-Si Alloys[J]. Mater. Sci. Forum, 1997, 242: 65-69.

[19]

Eskin G. I. Broad Prospects for Commercial Application of the Ultrasonic (cavitation) Melt Treatment of Light Alloys[J]. Ultrason. Sonnochem., 2001, 83: 319-325.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/