Structure and migration characteristic of heterointerfaces during the phase transformation from L12 to DO22 phase

Mingyi Zhang , Zheng Chen , Yongxin Wang , Jing Zhang , Yan Zhao , Yanli Lu

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (5) : 814 -819.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (5) : 814 -819. DOI: 10.1007/s11595-010-0099-7
Article

Structure and migration characteristic of heterointerfaces during the phase transformation from L12 to DO22 phase

Author information +
History +
PDF

Abstract

Based on the microscopic phase-field model, the structure and migration characteristic of ordered domain interfaces formed between DO22 and L12 phase are investigated, and the atomistic mechanism of phase transformation from L12 (Ni3Al) to DO22 (Ni3V) in Ni75Al xV25−x alloys are explored, using the simulated microstructure evolution pictures and the occupation probability evolution of alloy elements at the interface. The results show that five kinds of heterointerfaces are formed between DO22 and L12 phase and four of them can migrate during the phase transformation from L12 to DO22 except the interface (002)D//(001)L. The structure of interface (100)D//(200)L and interface (100)D//(200)L·1/2[001] remain the same before and after migration, while the interface (002)D//(002)L is formed after the migration of interface (002)D//(002)L·1/2[100] and vice versa. These two kinds of interface appear alternatively. The jump and substitute of atoms selects the optimization way to induce the migration of interface during the phase transformation, and the number of atoms needing to jump during the migration is the least among all of the possible atom jump modes.

Keywords

phase transformation / ordered domain interface / interface migration / microscopic phase-field / Ni75Al xV25−x alloy

Cite this article

Download citation ▾
Mingyi Zhang, Zheng Chen, Yongxin Wang, Jing Zhang, Yan Zhao, Yanli Lu. Structure and migration characteristic of heterointerfaces during the phase transformation from L12 to DO22 phase. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(5): 814-819 DOI:10.1007/s11595-010-0099-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Massalki T. B., Soffa W. A., Laughlin D. E. The Nature and Role of Incoherent Interphase Interfaces in Diffusional Solid-Solid Phase Transformations[J]. Metall. Trans. A, 2006, 37: 825-831.

[2]

Wang S. Q., Ye H. Q. Theoretical Studies of Solid-Solid Interfaces[ J]. Curr. Opin. Solid State Mater. Sci., 2006, 10: 26-32.

[3]

Tateyama S., Shibuta Y., Suzuki T. A Molecular Dynamics Study of the FCC-BCC Phase Transformation Kinetics of Iron[J]. Scripta Mater., 2008, 59: 971-974.

[4]

Gong H. R., Liu B. X. Influence of Interfacial Texture on Solid-State Amorphization and Associated Asymmetric Growth in Immiscible Cu-Ta Multilayers[J]. Phys. Rev. B, 2004, 70(10): 134 202-134 206.

[5]

Cahn J. W., Mishin Y., Suzuki A. Coupling Grain Boundary Motion to Shear Deformation [J]. Acta Mater., 2006, 54: 4 953-4 975.

[6]

Zhang H., Srolovitz D. J., Douglas J. F., . Characterization of Atomic Motion Governing Grain Boundary Migration[J]. Phys. Rev. B, 2006, 74: 115 404-115 407.

[7]

Howe J. M., Gautam A. R. S., Chatterjee K., . Atomic-Level Dynamic Behavior of a Diffuse Interphase Boundary in an Au-Cu Alloy[J]. Acta Mater., 2007, 55: 2 159-2 171.

[8]

Bos C., Sietsma J. A Mixed-Mode Model for Partitioning Phase Transformations[J]. Scripta Mater., 2007, 57: 1 085-1 088.

[9]

Bos C., Sommer F., Mittemeijer E. J. An Atomistic Analysis of the Interface Mobility in a Massive Transformation[J]. Acta Mater., 2005, 53: 5 333-5 341.

[10]

Singer H. M., Singer I., Jacot A. Phase-Field Simulations of α → γ Precipitations and Transition to Massive Transformation in the Ti-Al Alloy[J]. Acta Materialia, 2009, 57: 116-124.

[11]

Pareige C., Blavette D. Simulation of the FCC-FCC+L12 + DO22 Kinetic Reaction[J]. Scripta Mater, 2001, 44: 243-247.

[12]

Zhang M. Y., Wang Y. X., Chen Z., . Simulation of Ordered Domain Interfaces Formed Between L12 Phases in Ni-Al-V Alloy Using Microscopic Phase-Field Model[J]. Acta Metall. Sin., 2007, 43(10): 1 101-1 106.

[13]

Li Y. S., Chen Z., Lu Y. L., . Microscopic Phase-Field Simulation of Atomic Migration Characteristics in Ni75AlxV25x Alloys[J]. Mater. Lett., 2007, 61: 974-978.

[14]

Khachaturyan A. G. Theory of Structural Transformations in Solids[M], 1983 NewYork Wiley 23

[15]

Poduri R., Chen L. Q. Computer Simulation of Morphological Evolution and Coarsening Kinetics of δ′ (Al3Li) Precipitate in Al-Li Alloys[J]. Acta Mater, 1998, 46(11): 3 915-3 924.

[16]

Poduri R., Chen L. Q. Computer Simulation of Atomic Ordering and Compositional Clustering in the Pseudobinary Ni3Al-Ni3V System[J]. Acta Mate., 1998, 46(5): 1 719-1 729.

[17]

Hou H., Zhao Y. H., Zhao Y. H. Simulation of the Precipitation Process of Ordered Intermetallic Compounds in Binary and Ternary Ni-Al Based Alloys by the Phase-Field Model[J]. Mater. Sci. Eng. A, 2009, 499: 204-207.

[18]

Lu Y. L., Chen Z., Wang Y. X. Microscopic Phase-Field Simulation of the Early Precipitation Mechanism of Ni3Al Phase in Ni-Al Alloys[J]. Mater. Lett., 2008, 62: 1385-1 388.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/