Dynamic mechanical and thermal properties of cross-linked polystyrene/glass fiber composites

Quanyao Zhu , Fei Wu , Qing Yang , Jun Wang , Wen Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (5) : 780 -784.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (5) : 780 -784. DOI: 10.1007/s11595-010-0091-2
Article

Dynamic mechanical and thermal properties of cross-linked polystyrene/glass fiber composites

Author information +
History +
PDF

Abstract

Cross-linked polystyrene/glass fiber composites were fabricated using cross-linked polystyrene (CLPS) as matrix and E-glass fiber as the reinforcement. Surfaces of E-glass fibers were modified by vinyl triethoxysilane (VTES), vinyl trimethoxysilane (VTMS) and γ-methacryloylpropyl trimethoxysilane (MPS). The treated glass fibers were analyzed by fourier transform infrared spectroscopy (FTIR). Dynamic mechanical thermal analysis (DMTA) and thermo-gravimetric analysis (TGA) were employed to investigate the effect of glass fibers surface modification on viscoelastic behavior and thermal properties. The morphology of fracture surfaces of various composites was observed by scanning electron microscopy (SEM). The results revealed that these coupling agents were connected to the surfaces of the fibers by chemical bonding. Dynamic mechanical properties as well as thermal stability of the composites were improved considerablely, but to varying degrees depending on the fiber modification. The diversities of improvement of properties were attributed to the different interfacial adhesion between CLPS matrix and the glass fibers.

Keywords

polymer-matrix composite / cross-linked polystyrene (CLPS) / fiber/matrix bond / dynamic mechanical thermal analysis

Cite this article

Download citation ▾
Quanyao Zhu, Fei Wu, Qing Yang, Jun Wang, Wen Chen. Dynamic mechanical and thermal properties of cross-linked polystyrene/glass fiber composites. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(5): 780-784 DOI:10.1007/s11595-010-0091-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Carman G. P., Reifsnider K. L. Micromechanics of Short Fiber Composites[J]. Compos. Sci. Technol., 1992, 43(2): 137-146.

[2]

Marom G., Harel H., Neumann S., . Fatigue Behaviour and Rate-dependent Properties of Aramid Fibre/Carbon Fibre Hybrid Composites[J]. Compos. Part. A-appl. S, 1989, 20(5): 537-544.

[3]

Nair K. C. M., Kumar R. P., Thomas S., . Rheological Behavior of Short Sisal Fiber-reinforced Polystyrene Composites[J]. Compos. Part. A-appl. S, 2000, 31(11): 1 231-1 240.

[4]

Valente M. A., Costa L. C., Mendiratta S. K., . Structural and Electrical Properties of Polystyrene-Carbon Composites[J]. Solid State Commun., 1999, 112(2): 67-72.

[5]

Nair K. C. M., Diwan S. M., Thomas S. Tensile Properties of Short Sisal Fiber-reinforced Polystyrene[J]. J. Appl. Polym. Sci., 1996, 60(9): 1 483-1 497.

[6]

Czarnecki L., White J. L. Shear Flow Rheological Properties, Fiber Damage and Mastication Characteristics of Aramid, Glass and Cellulose Fiber Reinforced Polystyrene Melts[J]. J. Appl. Polym. Sci., 1980, 25(6): 1 217-1 244.

[7]

Mukherjee M., Das C. K., Kharitonov A. P., . Properties of Syndiotactic Polystyrene Composites with Surface Modified Short Kevlar Fiber[J]. Mat. Sci. Eng. A-struct., 2006, 441(1–2): 206-214.

[8]

Jensen R. E., Mcknight S. H. Inorganic-organic Fiber Sizings for Enhanced Energy Absorption in Glass Fiber-reinforced Composites Intendedor Structural Applications[J]. Compos. Sci. Technol., 2006, 66(3–4): 509-521.

[9]

Liao K., Li S. Interfacial Characteristics of a Arbon Nanotube Polystyrene Compoite System[J]. Appl. Phys. Lett., 2001, 79(25): 4 225-4 227.

[10]

Amado F. D. R., Gondran E., Ferreira J. Z., . Synthesis and Characteri-zation of High Impact Polystyrene/Polyaniline Composite Membranes for Electrodialysis[J]. J. Membrane. Sci., 2004, 234(1–2): 139-145.

[11]

Lee W. J., Lee D. C. Polystyrene/Bisphenol a Polycarbonate (PS/PC) Molecular Composite by in Situ Polymerization II. Effect of Different Molecular Size of PC on the Blending Behavior and Properties[J]. J. Appl. Polym. Sci., 2003, 87(10): 1 610-1 618.

[12]

Devaux E., Pak S. H., Caze C. Effects of the Structure of Styrene-co-maleic Anhydride Oligomers on the Interfacial Properties in a Glass Fibre Reinforced Polystyrene Composite Material[J]. Polym. Test., 2002, 21(7): 773-779.

[13]

Zhu Q. Y., Wu F., Wang J., . Synthesis and Study on Mechanical Properties of Crosslinked Polystyrene[J]. China Plastics, 2008, 22(9): 54-56.

[14]

Zhu Q. Y., Wu F., Chen W. Influence of Network Structure on Dynamic Mechanical Properties of Cross-linked Polystyrene/Glass Fiber Composites[J]. Advanced Materials Research, 2009, 79–82: 151-154.

[15]

Dibenedetto A. T. Tailoring of Interfaces in Glass Fiber Reinforced Polymer Composites: a Review[J]. Mat. Sci. Eng. A-struct., 2001, 302(1): 74-82.

[16]

Joseph P. V., Mathew G., Joseph K., . Dynamic Mechanical Properties of Short Sisal Fbre Reinforced Polypropylene Composites[J]. Compos. Part. A-appl. S, 2003, 34(3): 275-290.

[17]

Hameed N., Sreekumar P. A., Francis B., . Morphology, Dynamic Mechanical and Thermal Studies on Poly (styrene-co-acrylonitrile) Modified Epoxy Resin/Glass Fibre Composites[J]. Compos. Part. A-appl. S, 2007, 38(12): 2 422-2 432.

[18]

Okay Kurz M., Lutz K., . Cyclization and Reduced Pendant Vinyl Group Reactivity During the Free-radical Crosslinking Polymerization of 1, 4-Divinylbenzene[J]. Macromolecules, 1995, 28(8): 2 728-2 737.

[19]

Jancar J. Review of the Role of the Interphase in the Control of Composite Performance on Micro- and Nano-length Scales[J]. J. Mater. Sci., 2008, 43(20): 6 747-6 757.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/