Synthesis of polyaniline-Fe3O4 nanocomposites and their conductivity and magnetic properties

Chunjiang Leng , Jianhong Wei , Zhengyou Liu , Jing Shi , Chunxu Pan

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (5) : 760 -764.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (5) : 760 -764. DOI: 10.1007/s11595-010-0087-y
Article

Synthesis of polyaniline-Fe3O4 nanocomposites and their conductivity and magnetic properties

Author information +
History +
PDF

Abstract

By using inorganic Fe3O4 nanoparticles of different content as nucleation sites, PAn-Fe3O4 nanorods were successfully synthesized through a simple, conventional, and inexpensive one-step in-situ polymerization method. The TEM images revealed the size and morphology of the resultant nanocomposite. The EDS pattern confirmed the existence of Fe3O4 in the composite. The FT-IR spectral analysis confirmed the formation of PAn encapsulated Fe3O4 nanocomposite. With the content of Fe3O4 increasing, the conductivity of the nanocomposites gradually decreases, meanwhile, the saturation magnetization increases and reveals a super paramagnetic behavior. With controllable electrical, magnetic, and electromagnetic properties, the well-prepared nanocomposites may have the potential applications in chemical sensors, catalysis, microwave absorbing, and electro-magneto-rheological fluids, etc.

Keywords

polyaniline / Fe3O4 / nanocomposites / conductivity / super paramagnetism

Cite this article

Download citation ▾
Chunjiang Leng, Jianhong Wei, Zhengyou Liu, Jing Shi, Chunxu Pan. Synthesis of polyaniline-Fe3O4 nanocomposites and their conductivity and magnetic properties. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(5): 760-764 DOI:10.1007/s11595-010-0087-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miyauchi S., Abiko H., Sorimachi Y., . Preparation of Barium Titanate-polypyrrole Compositions and Their Electrical Properties[J]. J. Appl. Polym. Sci., 1989, 37: 289-293.

[2]

Guan J. G., Wang W., Gong R. Z., . One-Step Synthesis of Cobalt-Phthalocyanine/Iron Nanocomposite Particles with High Magnetic Susceptibility[J]. Langmuir, 2002, 18: 4 198-4 204.

[3]

Kim H. S., Sohn B. H., Lee W., . Multifunctional Layer-by-layer Self-assembly of Conducting Polymers and Magnetic Nanoparticles[J]. Thin Solid Film, 2002, 419: 173-177.

[4]

Anilkumar P., Jayakannan M. New Renewable Resource Amphiphilic Molecular Design for Size-Controlled and Highly Ordered Polyaniline Nanofibers[J]. Langmuir, 2006, 22: 5 952-5 957.

[5]

Lu X., Mao H., Chao D., . Ultrasonic Synthesis of Polyaniline Nanotubes Containing Fe3O4 Nanoparticles[J]. J. Solid State Chem., 2006, 179: 2 609-2 615.

[6]

Chen C. T., Chen Y. C. Fe3O4/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry[J]. Anal. Chem., 2005, 77: 5 912-5 219.

[7]

JCPDS Powder Diffraction File. International Center for Diffraction Data[DB]. Newtown Square, PA, 1980

[8]

Smith D. O. Magnetization of a Magnetite Single Crystal Near the Curie Point[J]. Phys. Rev., 1956, 102: 959-963.

[9]

Altura B. M., Gebrewold A., Zhang A., . Preparation of Nanocrystalline Fe3O4 by γ-ray Radiation[J]. Mater. Lett., 1997, 33: 113-116.

[10]

Yavuz Ram M. K., Aldissi M., . Synthesis and the Physical Properties of MnZn Ferrite and NiMnZn Ferrite-polyaniline Nanocomposite Particles[J]. J. Mater. Chem., 2005, 15: 810-817.

[11]

Luzny W., Banka E. Relations Between the Structure and Electric Conductivity of Polyaniline Protonated with Camphorsulfonic Acid[J]. Macromolecules, 2000, 33: 425-429.

[12]

Xia Y., Wiesinger J. M., Macdiarmid A. G. Camphorsulfonic Acid Fully Doped Polyaniline Emeraldine Salt: Conformations in Different Solvents Studied by an Ultraviolet/visible/near-infrared Spectroscopic Method[J]. Chem. Mater., 1995, 7: 443-445.

[13]

Diaz A. B., Mohallem N. D. S., Sinisterra R. D. Preparation of a Ferrofluid Using Cyclodextrin and Magnetite[J]. J. Magn. Magn. Mater. R., 2004, 272: 2 395-2 397.

[14]

MacDiamid A. G., Chiang J. C., Halpern M., . “Polyaniline”: Interconversion of Metallic and Insulating Forms[J]. Cryst. Liq. Cryst., 1985, 121: 173-180.

[15]

Wei S., Zhu Y., Zhang Y., . Preparation and Characterization of Hyperbranched Aromatic Polyamides/Fe3O4 Magnetic Nanocomposite[J]. React. Funct. Polym., 2006, 66: 1 272-1 277.

[16]

Bocanegra A., Mohallem N. D. S., Sinisterra R. D. Complex Material Using Beta-Cyclodextrins and Nickel-zinc Ferrite to Obtain a Magnetically Targetable Drug Carrier[J]. Mater. Res. Soc. Symp. Proc., 2002, 711: 30-35.

[17]

Xie H. Q., Guan J. G., Guo J. S. Three Ways to Improve Electroheological Properties of Polyaniline-based Suspensions[J]. J. Appl. Poly. Sci., 1997, 64: 1 641-1 647.

[18]

Kazantseva N. Z., Vilcakova J., Kresalek V., . Magnetic Behaviour of Composites Containing Polyaniline-coated Manganese-zinc Ferrite[J]. J. Magn. Magn.Mater., 2004, 269: 30-37.

[19]

Tang B., Geng Y., Sun Q., . Processible Nanomaterials with High Conductivity and Magnetizability. Preparation and Properties of Maghemite/polyaniline Nanocomposite Films[J]. Pure Appl. Chem., 2000, 72: 157-162.

[20]

Deng J., He C., Peng Y., . Magnetic and Conductive Fe3O4-polyaniline Nanoparticles with Core-shell Structure[ J]. Synth. Met., 2003, 139: 295-301.

[21]

Godovsky D. Y. Device Applications of Polymer-Nanocomposites[J]. Adv. Polym. Sci., 2000, 153: 163-205.

[22]

Bidan G., Jarjayes O., Fruchart J. M. New Nanocomposites Based on Tailor Dressed Magnetic Particles in a Polypyrrole Matrix[J]. Adv. Mater., 1994, 6: 152-155.

[23]

Kryszewski M., Jeszka J. K. Nanostructured Conducting Polymer Composites-superparamagnetic Particles in Conducting Polymers[J]. Synth. Met., 1998, 94: 99-104.

[24]

Sapurina I., Osadchev A. Y., Volchek B. Z. In-situ Polymerized Polyaniline Films: Brush-like Chain Ordering[J]. Synth. Met., 2002, 129: 29-37.

[25]

Fahlman M., Jasty S., Epstein A. J. Corrosion Protection of Iron/steel by Emeraldine Base Polyaniline: an X-ray Photoelectron Spectroscopy Study[J]. Synth. Met., 1997, 85: 1 323-1 326.

[26]

Chen X. D., He X. M. The Effect of the Recess Shape on Performance Analysis of the Gas-lubricated Bearing in Optical Lithography[J]. Tribology International, 2006, 39(11): 1 336-1 341.

[27]

He X. M., Chen X. D. The Dynamic Analysis of the Gas Lubracated Stage in Optical Lithography[J]. International Journal of Advanced Manufacturing Technology, 2007, 32(9–10): 978-984.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/