Preparation and enhanced daylight-induced photo-catalytic activity of transparent C-Doped TiO2 thin films

Aiying Bai , Wei Liang , Gengle Zheng , Jinbo Xue

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (5) : 738 -742.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (5) : 738 -742. DOI: 10.1007/s11595-010-0083-2
Article

Preparation and enhanced daylight-induced photo-catalytic activity of transparent C-Doped TiO2 thin films

Author information +
History +
PDF

Abstract

The transparent C-doped TiO2 nanostructure films were fabricated on the silicate glass substrates by sol-gel spin-coated method. The as-prepared films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible absorption spectra (UV-vis) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity was evaluated via the photo-catalytic oxidation of methylene blue in aqueous under daylight irradiation at room temperature. The results show that the daylight-induced photocatalytic activities of the as-prepared films are improved by the C-doping. The calcination temperatures significantly affect the morphology, microstructure and photocatalytic activity of the as-prepared samples. At 723 K, the C-doped TiO2 films exhibit the highest photocatalytic activity due to the synergetic effects of good crystallization, appropriate oxygen vacancies and strong absorption in the near UV and visible-light region.

Keywords

C-doped / TiO2 films / daylight-induced / photocatalytic activity / spin-coated

Cite this article

Download citation ▾
Aiying Bai, Wei Liang, Gengle Zheng, Jinbo Xue. Preparation and enhanced daylight-induced photo-catalytic activity of transparent C-Doped TiO2 thin films. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(5): 738-742 DOI:10.1007/s11595-010-0083-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lucarelli L., Nadtochenoko V., Kiwi J. Environmental Photochemistry Quantitative Adsorption and FTIR Studies During the TiO2 Photo-catalyzed Degradation of Orange [J]. II Langmuir, 2000, 16(3): 1 102-1 108.

[2]

Aquid M., Munner M. Semiconductor Mediated Photo-catalysed Degradation of an Anthaquinone Dye, Remazol Brilliant Blue R under Sunlight and Articial Light Source [J]. Dyes Pigments, 2002, 53(3): 237-249.

[3]

Enriquez R., Pichat P. Interactions of Humic Acid, Quinoline, and TiO2 in Water in Relation to Quinoine Photo-catalytic Removal[J]. Langmuir, 2001, 17(20): 6 132-6 137.

[4]

Brinker C. J., Harrington M. S. Sol-gel Derived Antireflective Coatings for Silicon[J]. Solar Energy Materials, 1981, 5(2): 159-172.

[5]

Yu J. G., Zhou M. H., Cheng B., . Preparation, Characterization and Photocatalytic Activity of In-situ N,S-codoped TiO2 Powders[J]. Journal of Molecular Catalysis A: Chemical, 2006, 246(1–2): 176-184.

[6]

Xue J. B., Li Q., Liang W., . Electronic Band Structures of TiO2 with Heavy Nitrogen Doping[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2008, 23(6): 799-803.

[7]

Yu J. C., Yu J. G., Ho W. K., . Effects of F-doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders[J]. Chem. Mater., 2002, 14: 3 803-3 816.

[8]

Hou Y. N., Qu J. H., Zhao X., . Electrochemical Incineration of Dimethyl Phthalate by Anodic Oxidation with Boron-doped Diamond Electrode[J]. Journal of Environmental Sciences, 2009, 21(10): 1 321-1 328.

[9]

Zhou M. H., Yu J. G. Preparation and Enhanced Daylight-induced Photocatalytic Activity of C,N,S-Tridoped Titanium Dioxide Powders[J]. Journal of Hazardous Materials, 2008, 152: 1 229-1 236.

[10]

Tada H., Hattori A., Tokihisa Y., . A Patterned-TiO2/SnO2 Bilayer Type Photocatalyst[J]. Phys. Chem. B, 2000, 104: 4 585-4 587.

[11]

Lindberg B., Maripuu R., Siegbahn K., . ESCA Studies of Heparinized and Related Surfaces. I: Model Surfaces on Steel Substrates[J]. J. Colloid. Interface Sci., 1983, 95(2): 308-321.

[12]

Kumazawa H., Inoue M., Kasuya T., . Photocatalytic Degradation of Volatile and Nonvolatile Organic Compounds on Titanium Dioxide Particles Using Fluidized Beds[J]. Chem. Res., 2003, 42(14): 3 237-3 244.

[13]

Yu J. G., Su Y. R., Cheng B., . Effects of pH on the Microstructures and Photocatalytic Activity of Mesoporous Nanocrystalline Titania Powders Prepared Via Hydrothermal Method[J]. J. Mol.Catal. A, 2006, 258(1–2): 104-112.

[14]

Yu J. G., Zhao X. J., Zhao Q. N. Photocatalytic Activity of Nanometer TiO2 Thin Films Prepared by the Sol-gel Method[J]. Materials Chemistry and Physics, 2001, 69(1–3): 25-29.

[15]

Dhumal S. Y., Daulton T. L., Jiang J. K., . Synthesis of Visible Light-active Nanostructured TiOx (x<2) Photocatalysts in a Flame Aerosol Reactor[J]. Applied Catalysis B: Environmental, 2009, 86: 145-151.

[16]

Justicia I., Garcia G., Battiston G. A., . Photocatalysis in the Visible Range of Substoichiometric Anatase Films Prepared by MOCVD[J]. Electrochim. Acta, 2005, 50(23): 4 605-4 608.

[17]

Campbell C. T., Peden C. H. F. Oxygen Vacancies and Catalysis on Ceria Surfaces[J]. Science, 2005, 309(29): 713-714.

[18]

Chen X. D., He X. M. The Effect of the Recess Shape on Performance Analysis of the Gas-lubricated Bearing in Optical Lithography[J]. Tribology International, 2006, 39(11): 1 336-1 341.

[19]

He X. M., Chen X. D. The Dynamic Analysis of the Gas Lubracated Stage in Optical Lithography[J]. International Journal of Advanced Manufacturing Technology, 2007, 32(9–10): 978-984.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/