Preparation and characterization of antibacterial Zn2+-exchanged montmorillonites

Qingshan Shi , Shaozao Tan , Qiuhui Yang , Zepeng Jiao , Yousheng Ouyang , Yiben Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (5) : 725 -729.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (5) : 725 -729. DOI: 10.1007/s11595-010-0080-5
Article

Preparation and characterization of antibacterial Zn2+-exchanged montmorillonites

Author information +
History +
PDF

Abstract

Zn-montmorillonites(Zn-MMTs) as antibacterial compounds were prepared by an ion-exchange reaction. The reaction time, initial pH value and molar ratios of CEC influencing zinc content in Zn-MMTs were investigated, and Zn-MMTs were characterized by means of EDX, XRD, XPS, and SEM. The results of bacterial growth tests were confirmed by determination of the minimum inhibition concentrations (MICs) and minimum bactericidal concentrations (MBCs). The experimental results show that the zinc is confirmed as bivalent zinc state, the d 001 basal spacing of Zn-MMTs is enlarged with the enhancement of the zinc content, and the particles of Zn-MMTs are formed with irregular shape. Moreover, the antibacterial activity of Zn-MMTs increases with increasing the zinc content, and Zn-MMT-3 containing 6.76 mass% of zinc exhibits optimum antibacterial activity against Escherichia coli and Staphylococcus aureus. The intercalated zinc ions act as very effective antibacterial substances in the long term.

Keywords

Zn2+-exchanged montmorillonites / preparation / chemical composition / microstructure / antibacterial activity

Cite this article

Download citation ▾
Qingshan Shi, Shaozao Tan, Qiuhui Yang, Zepeng Jiao, Yousheng Ouyang, Yiben Chen. Preparation and characterization of antibacterial Zn2+-exchanged montmorillonites. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(5): 725-729 DOI:10.1007/s11595-010-0080-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li B., Wang X., Chen R. X., . Antibacterial Activity of Chitosan Solution against Xanthomonas Pathogenic Bacteria Isolated from Euphorbia pulcherrima[J]. Carbohyd. Polym., 2008, 72(2): 287-292.

[2]

Tan S. Z., Zhang L. L., Xia L. Y., . Structure and Antibacterial Activity of New Layered Perovskite Compounds[J]. Trans. Nonferrous Met. Soc. China, 2007, 17(2): 257-261.

[3]

Ayben T., Semra Silver, Zinc, and Copper Exchange in a Na-clinoptilolite and Resulting Effect on Antibacterial Activity[ J]. Appl. Clay. Sci., 2004, 27(1–2): 13-19.

[4]

Kawashita M., Tsuneyama S., Miyaji F., . Antibacterial Silver-containing Silica Glass Prepared by Sol-gel Method[J]. Biomaterials, 2000, 21(4): 393-398.

[5]

Zhang S., Fu R., Wu D., . Preparation and Characterization of Antibacterial Silver-dispersed Activated Carbon Aerogels[J]. Carbon, 2004, 42(15): 3 209-3 216.

[6]

Tan S. Z., Zhang L. L., Huang L. H., . Study on the Heat Treating Process of Silver-carried Antibacterial Agent[J]. J. Ceram. Soc. Jpn., 2007, 115(4): 269-271.

[7]

Kwolek T., Hodorowicz M., Stadnicka K., . Adsorption Isotherms of Homologous Alkyldimethylbenzylammonium Bromides on Sodium Montmorillonite[J]. J. Colloid Interf. Sci., 2003, 264(1): 14-19.

[8]

Fan L. P., Chen M., Zhang Y. G., . Synthesis and Characterization of New Material-La/Zr/MMT Employed in Acetone Oxidation[J]. Chinese J. Chem., 2007, 25(5): 666-669.

[9]

Zhou Y. H., Xia M. S., Ye Y., . Antimicrobial Ability of Cu2+-montmorillonite[J]. Appl. Clay Sci., 2004, 27(3–4): 215-218.

[10]

Herrera P., Burghardt R. C., Phillips T. D. Adsorption of Salmonella Enteritidis by Cetylpyridinium-exchanged Montmorillonite Clays[J]. Vet. Microbiol., 2000, 74(3): 259-272.

[11]

Tan S. Z., Zhang K. H., Li D. X., . Study on Preparation and Property of Modified Montmorillonites with Quaternary Phosphonium Salts[J]. Journal of Central South University (Science and Technology), 2006, 37(2): 280-285.

[12]

Cho Y. H., Lee S. J., Lee J. Y., . Antibacterial Effect of Intraprostatic Zinc Injection in a Rat Model of Chronic Bacterial Prostatitis[J]. Int. J. Antimicrob. Agents, 2002, 19(6): 576-582.

[13]

Hindi K. M., Ditto A. J., Panzner M. J., . The Antimicrobial Efficacy of Sustained Release Silver-carbene Complex- loaded L-tyrosine Polyphosphate Nanoparticles: Characterization, in Vitro and in Vivo Studies[J]. Biomaterials, 2009, 30(22): 3 771-3 779.

[14]

Ren G., Hu D., Cheng E. W., . Characterisation of Copper Oxide Nanoparticles for Antimicrobial Applications[J]. Int. J. Antimicrob. Agents, 2009, 33(6): 587-590.

[15]

Aroson B. J., Blanford C. F., Stein A. Synthesis, Characterization, and Ion-exchange Properties of Zinc and Magnesium Manganese Oxides Confined within MCM-41 Channels[J]. J. Phys. Chem. B., 2000, 104(3): 449-459.

[16]

Khan R. K., Stoimenov P. K., Mates T. E., . Exploring Gradients of Halogens and Zinc in the Surface and Subsurface of Nereis Jaws[J]. Langmuir, 2006, 22(20): 8 465-8 471.

[17]

He H. P., Guo J. G., Xie X. D., . State of Cu2+ Absorbed by Montmorillonite[J]. Geochimica, 2000, 29(2): 198-201.

[18]

Yoon K. Y., Byeon J. H., Park C. W., . Antimicrobial Effect of Silver Particles on Bacterial Contamination of Activated Carbon Fibers[J]. Environ. Sci. Technol., 2008, 42(4): 1 251-1 255.

AI Summary AI Mindmap
PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/