Photorefractivity in a bi-functional polymer nanocomposites sensitized by CdS nanoparticle

Liyun Ding , Lanfen Huang , Yunming Zhong

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (4) : 550 -554.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (4) : 550 -554. DOI: 10.1007/s11595-010-0041-z
Article

Photorefractivity in a bi-functional polymer nanocomposites sensitized by CdS nanoparticle

Author information +
History +
PDF

Abstract

We report an organic/inorganic hybridized nanocomposite consisting of a bi-functional poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl serves as a polymeric charge-transporting and second-order nonliner optical matrix, and CdS nanoparticles as photosensitizers to manifest photorefractive (PR) effect. The unpoled PVNPAK film exhibits a second harmonic generation (SHG) coefficient of 4.7 pm/V due to the possibility of self-alignment of the azo chromophore. Significant enhancement of photoconductivity is noticed with the increase of CdS nanoparticles concentration. The photorefractive property of the polymer nanocomposites were determined by two-beam coupling (TBC) experiment. The TBC gain and diffraction efficiency of 11.89 cm−1 and 3.2% were obtained for PVNPAK/CdS at zero electrical field.

Keywords

organic/inorganic hybridized / bi-functional polymer / photorefractive effect / CdS nanoparticles

Cite this article

Download citation ▾
Liyun Ding, Lanfen Huang, Yunming Zhong. Photorefractivity in a bi-functional polymer nanocomposites sensitized by CdS nanoparticle. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(4): 550-554 DOI:10.1007/s11595-010-0041-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y., Cui Y., Prasad P. N. Observation of Photorefractivity in a Fullerene-doped Polymer Composite[J]. Phys. Rev. B, 1992, 46: 9900-9902.

[2]

Meerholz K., Volodin B. L., Sandalphon, . A Photorefractive Polymer with High Optical Gain and Diffraction Efficiency Near 100%[J]. Nature, 1994, 371: 497-500.

[3]

Zhang Y., Burzynski R., Ghosal S., . Photorefractive Polymers and Composites[J]. Adv. Mater., 1996, 8: 111-125.

[4]

Kippelen B., Peyghambarian N. Photorefracitve Polymers and Their Applications[J]. Advances in Polymer Science, 2003, 161: 87-156.

[5]

Wang Y. Photoconductivity of Fullerene-doped Polymers[J]. Nature (London), 1992, 365: 585-587.

[6]

Dabbousi B. O., Bawend M. G., Onitsuka O., . Electroluminescence from CdSe Quantum-dot/polymer Composites[J]. Appl. Phys. Lett., 1995, 66: 1316-1318.

[7]

Wang Y., Herron N. Semiconductor Nanocrystals in Carrier-transporting Polymers-charge Generation and Charge Transport[J]. J. Lumin., 1996, 70: 48-59.

[8]

Winiaza J. G., Zhang L. M., Lal M., . Photogeneration, Charge Transport, and Photoconductivity of a Novel PVK/CdS Nanocrystal Polymer Composite[J]. Chem. Phys., 1999, 245: 417-428.

[9]

Greenham N. C., Peng X., Alivisators A. P. Charge Separation and Transport in Conjugated Polymer/Semiconductor Nanocrystal Composites Studied by Photoluminescence Quenching and Photoconductivity[J]. Phys. Rev. B, 1996, 54(24): 17628-17637.

[10]

Thelakkat M., Schmitz C., Hohle C., . Novel Functional Materials based on Triarylamines-synthesis and Application in Electroluminescent Devices and Photorefractive Systems[J]. Phys. Chem. Chem. Phys., 1999, 1: 1693-1698.

[11]

Diduch K., Wübbenhorst M., Kucharski S. Photocurrentgeneration of Bi-functional Carbazole Containing Polymers[J]. Synthetic Metals, 2003, 139: 515-520.

[12]

Chen Y. W., Gong Q. H., Wang F., . Synthesis and Characterization of Photorefractive Materials based on Polymers Containing Photoconductors and Nonlinear Chromophores[J]. Mater. Lett., 2003, 57: 4372-4377.

[13]

Jiang D. S., Ding L. Y., Huang J. Synthesis and Characterization of a Novel Poly(N-vinyl)-3-[p-nitrophenylazo] Carbazolyl-CdS Nanocomposites through Chemical Hybridization [J]. Mater. Lett., 2006, 60: 3457-3462.

[14]

Ding L. Y., Jiang D. S., Huang J., . Photoconductivity of Novel Poly (N-vinyl) -3- [p-nitrophenylazo] Carbazole/ CdS-nanoparticle Polymer Composite[J]. Trans. Nonferrous Met. Soc. China, 2006, 16: s191-s194.

[15]

Herman W. N., Hayden L. M. Maker Fringes Revisited: Second-harmonic Generation from Birefringent or Absorbing Materials[J]. J. Opt. Soc. Am. B, 1995, 12: 416-427.

[16]

Jerphagnon J., Kurtz S. K. A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals[J]. J. Appl. Phys., 1970, 41(4): 1667-1681.

[17]

Wang Y., Herron N. Photoconductivity of CdS Nanocluster- doped Polymers[J]. Chem. Phys. Lett., 1992, 200: 71-75.

[18]

Choudhurk K. R., Samoc M., Patra A., . Charge Carrier Transport in Poly(N-vinylcarbazole): CdS Quantum Dot Hybrid Nanocomposite[J]. J. Phys. Chem. B, 2004, 108: 1556-1562.

[19]

Onsager L. Debiations from Ohm’s Law in Weak Electrolytes[J]. J. Chem. Phys., 1934, 2: 599-615.

[20]

Moerner W. E., Silence S. M. Polymeric Photorefractive Materials[J]. Chem. Rev., 1994, 94(1): 127-155.

[21]

Ding L. Y., Jiang D. S., Huang J., . Photorefractive Performance of a Novel Multifunctional Inorganic-organic Hybridized Nanocomposite Sensitized by CdS Nanoparticles[ J]. J. Phys. Chem. C, 2008, 112: 10266-10272.

[22]

Moerner W. E., Silence S. M. Polymeric Photorefractive Materials[J]. Chem. Rev., 1994, 94(1): 127-155.

[23]

Li L., Chittibabu K. G., Chen Z., . Photorefractive Effect in a Conjugated Polymer Based Material[J]. Opt. Commu., 1996, 125: 257-261.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/