Preparation and characterization of nano-hydroxy apatite/konjac glucomannan composite scaffolds

Lingzhan Pan , Huawei He , Zhiwen Yao , Zhiqing Chen , Jingsong Liu , Hualin Zhang , Jun Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (3) : 484 -486.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (3) : 484 -486. DOI: 10.1007/s11595-010-0028-9
Article

Preparation and characterization of nano-hydroxy apatite/konjac glucomannan composite scaffolds

Author information +
History +
PDF

Abstract

A novel nano-hydroxyapatite (HA)/konjac glucomannan composite scaffold with high porosity was developed by blending nano-HA particles with konjac glucomannan in alkaline solution. The scanning electron microscopy, porosity measurement, X-ray diffraction(XRD), and Fourier transformed infrared(FTIR) spectroscopy were used to analyze the physical and chemical properties of the composite scaffolds. The pure konjac glucomannan scaffolds and composite scaffolds were similar in their macroscopic morphology, however, the microscopic morphology on porewall surfaces was quite different. The diffraction patterns of XRD revealed the presence of konjac glucomannan and HA in the composite scaffolds. In addition, the results of FTIR also showed the existence of the functional group of HA. These results reveal that the newly developed nano-HA/konjac glucomannan composite scaffold may serve as a good three-dimensional substrate in bone tissue engineering.

Keywords

konjac glucomannan / hydroxyapatite / microstructure / nano / scaffold

Cite this article

Download citation ▾
Lingzhan Pan, Huawei He, Zhiwen Yao, Zhiqing Chen, Jingsong Liu, Hualin Zhang, Jun Yang. Preparation and characterization of nano-hydroxy apatite/konjac glucomannan composite scaffolds. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(3): 484-486 DOI:10.1007/s11595-010-0028-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hidalgo D. A., Rekow A. A Review of 60 Consecutive Fibula Free Flap Mandible Reconstruction[J]. Plast Reconstr. Surg., 1995, 96(3): 585-596.

[2]

Goldberg V. M., Stevenson S. Natural History of Autografts and Allografts[J]. Clin Orthop, 1987, 225(1): 7-16.

[3]

Costantino P. D., Friedman C. D. Synthetic Bone Graft Substitutes[J]. Otolaryngol. Clin. North Am., 1994, 27(5): 1 037-1 074.

[4]

Lee S. H., Shin H. Matrices and Scaffolds for Delivery of Bioactive Molecules in Bone and Cartilage Tissue Engineering[ J]. Advanced Drug Delivery Reviews, 2007, 59(4–5): 339-359.

[5]

Muschler G. F., Nakamoto C., Griffith L. G. Engineering Principles of Clinical Cell-based Tissue Engineering[J]. J. Bone Jt. Surg., 2004, 86-A(7): 1 541-1 558.

[6]

Ishihara K., Arai H., Nakabayashi N., . Adhesive Bone Cement Containing Hydroxyapatite Particle as Bone Compatible Filler[J]. J. Biomed. Mater. Res., 1992, 26(7): 937-945.

[7]

Holmes R. E., Bucholz R. W., Mooney V. Porous Hydroxyapatite as a Bone-graft Substitute in Metaphyseal Defects[J]. J. Bone Joint Surg., 1986, 68(6): 904-911.

[8]

Jarcho M. Calcium Phosphate Ceramics as Hard Tissue Prosthetics[J]. Clin. Orthop., 1981, 157(Jun): 259-278.

[9]

Ogiso M. Reassessment of Long-term Use of Dense HA as Dental Implant: Case Report[J]. J. Biomed. Mater. Res., 1998, 43(3): 318-320.

[10]

Hench L. L. Bioceramics: from Concept to Clinic[J]. J. Am. Ceram. Soc., 1991, 74(7): 1 487-1 510.

[11]

Zhang R., Ma P. X. Poly(α-Hydroxyl Acids)/Hydroxyapatite Porous Composites for Bone-tissue Engineering. I. Preparation and Morphology[J]. J. Biomed. Mater. Res., 1999, 44(4): 446-455.

[12]

Elliot J. C. Structure, Chemistry of the Apatites, and Other Calcium Orthophosphates[M], 1994 Amsterdam Elsevier Science 111

[13]

Webster T. J., Ergun C., Doremus R. H., . Enhanced Functions of Osteoblasts on Nanophase Ceramics[J]. Biomaterials, 2000, 21(17): 1 803-1 810.

[14]

Miyamato Y., Ishikawa K. I., Takechi M., . Basic Properties of Calcium Phosphate Cement Containing Atelocollagen in Its Liquid or Powder Phases[J]. Biomaterials, 1998, 19(7-9): 707-715.

[15]

Zhang H., Yoshimura M., Nishinari K., . Gelation Behavior of Konjac Glucomannan with Different Molecular Weights[J]. Biopolymers, 2001, 59(1): 38-50.

[16]

Qi L., Li G. J. Properties and Application of a Plant Polysaccharide Konjac Glucomannan[J]. Polym. Bull., 2004, 4(1): 12-14.

[17]

Nutricol K. General Technology Bulletin[M], 1993 Danmark FMC Corporation, Food Ingredients Division 89-101.

[18]

Jie P., Fu-Sheng Z., Bin-Bin K., . Interactions Among Various Functional Macromolecules and Its Application[J]. Gaodeng Xuexiao Huaxue Xuebao, 2004, 25(11): 2 042-2 047.

[19]

Wang B., Wang K. Y., Dan W. H., . Konjac Glucomannan-collagen-chitosan Blend Film (I)[J]. J. Biomed. Eng., 2006, 23(1): 102-106.

[20]

Zhou G., Li Y. B., Zhang L., . The Study of Tri-phasic Interactions in Nano-hydroxyapatite/Konjac Glucomannan/Chitosan Composite[J]. J. Mater. Sci., 2007, 42(1): 2 591-2 597.

[21]

Tampieri A., Celotti G., Sprio S., . Porosity-graded Hydroxyapatite Ceramics to Replace Natural Bone[J]. Biomaterials, 2001, 22(11): 1 365-1 370.

[22]

Sepulveda P., Binner J. G. P., Rogero S. O., . Production of Porous Hydroxyapatite by the Gel-casting of Foams and Cytotoxic Evaluation [J]. J. Biomed. Mater.Res., 2000, 50(1): 27-34.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/