Consolidation and microstructures of microwave sintered W-25Cu alloys with Fe addition

Shudong Luo , Jianhong Yi , Yingli Guo , Yuandong Peng , Liya Li , Gang Chen , Junming Ran

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (3) : 437 -443.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (3) : 437 -443. DOI: 10.1007/s11595-010-0019-x
Article

Consolidation and microstructures of microwave sintered W-25Cu alloys with Fe addition

Author information +
History +
PDF

Abstract

W-25Cu alloys were microwave sintered in a 2.45 GHz multimode applicator. The densification, microstructure and their dependence on sintering mode and Fe addition were investigated in detail. Owing to the volumetric heating intrinsic in microwave processing, a microstructure with larger W grain size in center regions was observed as against larger grain size in edge regions for conventional sintering. Microwave sintering demonstrates its intrinsic advantages such as rapid heating rate, densification enhancement and microstructural homogeneity; but it undesirably promotes W grain growth. Under microwave sintering, the role of Fe addition on compact consolidation is not so substantial as under conventional sintering. Moreover Fe degrades the microstructural quality, generating worse uniformity and coarser W grains.

Keywords

W-Cu alloy / microwave sintering / consolidation / microstructure / Fe addition

Cite this article

Download citation ▾
Shudong Luo, Jianhong Yi, Yingli Guo, Yuandong Peng, Liya Li, Gang Chen, Junming Ran. Consolidation and microstructures of microwave sintered W-25Cu alloys with Fe addition. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(3): 437-443 DOI:10.1007/s11595-010-0019-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Thostenson E. T., Chou T.-W. Microwave Processing: Fundamentals and Applications[J]. Compos.: Part A, 1999, 30: 1 055-1 071.

[2]

Bykov Y. V., Rybakov K. I., Semenov V. E. High-temperature Microwave Processing of Materials[J]. J. Phys. D: Appl. Phys., 2001, 34: R55-R75.

[3]

T Gerdes, M Willert-Porada, H S Park. Microwave Sintering of Ferrous PM Materials[C]. Proceedings of the 2006 International Conference on Powder Metallurgy & Particulate Materials, San Diego, 2006: 294–306

[4]

Agrawal D. Microwave Sintering, Brazing and Melting of Metallic Materials[C]. Sohn International Symposium, 2006, 4: 183-192.

[5]

Wong W. L. E., Gupta M. Improving Overall Mechanical Performance of Magnesium Using Nano-alumina Reinforcement and Energy Efficient Microwave Assisted Processing Route[J]. Adv. Eng. Mater., 2007, 9: 902-909.

[6]

Cheng J., Agrawal D., Zhang Y., . Microwave Sintering of Transparent Alumina[J]. Mater. Lett., 2002, 56: 587-592.

[7]

Tsay C. Y., Liu K. S., Lin I. N. Co-firing Process Using Conventional and Microwave Sintering Technologies for MnZn- and NiZn-Ferrites[J]. J. Eur. Ceram. Soc., 2001, 21: 1 937-1 940.

[8]

Breval E., Cheng J. P., Agrawal D. K., . Comparison Between Microwave and Conventional Sintering of WC/Co Composites[J]. Mater. Sci. Eng. A, 2005, 391: 285-295.

[9]

Walkiewicz J. W., Kazaonich G., McGill S. L. Microwave Heating Characteristics of Selected Minerals and Compounds[J]. Minerals Metall. Proc., 1988, 2: 39-42.

[10]

S Gedevanishvilli, D Agrawal, R Roy, et al. Microwave Processing Using Highly Microwave Absorbing Powdered Material Layers[P]. U.S. Patent, No.6 512 216, 2003

[11]

Mishra P., Sethi G., Upadhyaya A. Modeling of Microwave Heating of Particulate Metals[J]. Metall. Mater. Trans. B, 2006, 37: 839-845.

[12]

Roy R., Agrawal D., Cheng J., . Full Sintering of Powdered-metal Bodies in a Microwave Field[J]. Nature, 1999, 399: 668-671.

[13]

Anklekar R. M., Bauer K., Agrawal D. K., . Improved Mechanical Properties and Microstructural Development of Microwave Sintered Copper and Nickel Steel PM Parts[J]. Powder Metall., 2005, 48: 39-46.

[14]

Saitou K. Microwave Sintering of Iron, Cobalt, Nickel, Copper and Stainless Steel Powders[J]. Scripta Mater., 2006, 54: 875-879.

[15]

Jain M., Skandan G., Martin K., . Microwave Sintering: A New Approach to Fine-grain Tungsten-I [J]. Int. J. Powder Metall., 2006, 42: 45-50.

[16]

Upadhyaya A., Tiwari S. K., Mishra P. Microwave Sintering of W-Ni-Fe Alloy[J]. Scripta Mater., 2007, 56: 5-8.

[17]

Upadhyaya A., Sethi G. Effect of Heating Mode on the Densification and Microstructural Homogenization Response of Premixed Bronze[J]. Scripta Mater., 2007, 56: 469-472.

[18]

Thakur S. K., Kong T. S., Gupta M. Microwave Synthesis and Characterization of Metastable (Al/Ti) and Hybrid (Al/Ti+SiC) Composites[J]. Mater. Sci. Eng. A, 2007, 452–453: 61-69.

[19]

Wong W. L. E., Gupta M. Development of Mg/Cu Nanocomposites Using Microwave Assisted Rapid Sintering[J]. Compos. Sci. Technol., 2007, 67: 1 541-1 552.

[20]

Luo S., Yi J., Guo Y., . Microwave Sintering W-Cu Composites: Analyses of Densification and Microstructural Homogenization[J]. J. Alloys Compd., 2008, 473: L5-L9.

[21]

Moon I. H., Lee J. S. Sintering of W-Cu Contact Materials with Ni and Co Dopants[J]. Powder Metall. Int., 1977, 9: 23-24.

[22]

Johnson J. L., German R. M. Factors Affecting the Thermal Conductivity of W-Cu Composites[J]. Adv. Powder Metall., 1993, 4: 201-213.

[23]

Johnson J. L., German R.M. Chemically Activated Liquid Phrase Sintering of Tungsten-Copper[J]. Int. J. Powder Metall., 1994, 30: 91-102.

[24]

da Costa F. A., da Silva A. G. P., Gomes U. U. The Influence of the Dispersion Technique on the Characteristics of the W-Cu Powders and on the Sintering Behavior[J]. Powder Technol., 2003, 134: 123-132.

[25]

Ozer O., Missiaen J. -M., Lay S., . Processing of Tungsten/Copper Materials from W-CuO Powder Mixtures[J]. Mater. Sci. Eng. A, 2007, 460–461: 525-531.

[26]

Rybakov K. I., Semenov V. E., Egorov S. V., . Microwave Heating of Conductive Powder Materials[J]. J. Appl. Phys., 2006, 99: 023506

[27]

Wang J., Binner J., Vaidhyanathan B., . Evidence for the Microwave Effect During Hybrid Sintering[J]. J. Am. Ceram. Soc., 2006, 89: 1 977-1 984.

[28]

Ma J., Diehl J. F., Johnson E. J., . Systematic Study of Microwave Absorption, Heating, and Microstructure Evolution of Porous Copper Powder Metal Compacts[J]. J. Appl. Phys., 2007, 101: 074906

[29]

Li Z., Jia C., He Y., . Kinetic Characteristics of Liquid Phase Sintering of Mechanically Activated W-15wt%Cu Powder[J]. J. Univ. Sci. Technol. Beijing, 2006, 13: 338-345.

[30]

Li S. B., Xie J. X. Processing and Microstructure of Functionally Graded W/Cu Composites Fabricated by Multi-billet Extrusion Using Mechanically Alloyed Powders[J]. Compos. Sci. Technol., 2006, 66: 2 329-2 336.

[31]

Ryu S. S., Kim Y. D., Moon I. H. Dilatometric Analysis on the Sintering Behavior of Nanocrystalline W-Cu Prepared by Mechanical Alloying[J]. J. Alloys Compd., 2002, 335: 233-240.

[32]

Johnson J. L., Brezovsky J. J., German R. M. Effect of Liquid Content on Distortion and Rearrangement Densification of Liquid-Phase-Sintered W-Cu[J]. Metall. Mater. Trans. A, 2005, 36: 1 557-1 565.

[33]

Kim D. G., Kim G. S., Suk M. J., . Effect of Heating Rate on Microstructural Homogeneity of Sintered W-15wt%Cu Nanocomposite Fabricated from W-CuO Powder Mixture[J]. Scripta Mater., 2004, 51: 677-681.

[34]

Gauthier V., Robaut F., Upadhyaya A., . Effect of Fe on the Constituent of Cu-W Alloys at 1 200 °C[J]. J. Alloys Compd., 2003, 361: 222-226.

[35]

Doré F., Lay S., Eustathopoulos N., . Segregation of Fe During the Sintering of Doped W-Cu Alloys[J]. Scripta Mater., 2003, 9: 237-242.

[36]

Johnson J. L., German R. M. Solid-State Contributions to Densification during Liquid-Phase Sintering[J]. Metall. Mater. Trans. B, 1996, 27: 901-909.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/