Multiscale simulation of the dislocation emissions of single Ni crystal in nanoindentation

Jiuhui Li , Xing Zhao , Shaoqing Wang , Caibei Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (3) : 423 -428.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (3) : 423 -428. DOI: 10.1007/s11595-010-0016-0
Article

Multiscale simulation of the dislocation emissions of single Ni crystal in nanoindentation

Author information +
History +
PDF

Abstract

The simulation of nanoindentation into single nickel crystal is performed by using quasi continuum method. The strain energy-displacement and load-displacement curves are presented to study the mechanical behavior of the dislocation nucleation. The characteristics of the stacking fault and dislocation nucleation are determined by calculating the centro-symmetry parameters and analyzing the displacement field of the atoms beneath the indenter. The structure of the stacking fault and the characteristics of dislocation obtained in the simulation by quasicontinuum method are reproduced in the simulation by molecular dynamics.

Keywords

single crystal Ni / nanoindentation / dislocation / stacking fault / quasicontinuum method / molecular dynamics

Cite this article

Download citation ▾
Jiuhui Li, Xing Zhao, Shaoqing Wang, Caibei Zhang. Multiscale simulation of the dislocation emissions of single Ni crystal in nanoindentation. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(3): 423-428 DOI:10.1007/s11595-010-0016-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Q. K., Zhang Y., Chu W. Y. Molecular Dynamics Simulation of Plastic Deformation during Nanoindentation[J]. Acta Metall. Sin., 2004, 40(12): 1 238-1 242.

[2]

Landman U., Luedtke W. D., Burnham N. A., . Atomic Mechanisms and Dynamics of Adhesion, Nanoindentation, Fracture[J]. Science, 1990, 248(4954): 454-461.

[3]

Belak J., Boercker D. B., Stowers I. F. Simulation of Nano meter-scale Deformation of Metallic and Ceramic Surfaces[ J]. MRS Bulletin, 1993, 18(5): 55-60.

[4]

Yu H. L., Adams J. B., Louis G. H. Jr Molecular Dynamics Simulation of High-speed Nanoindentation[J]. Modelling Simul. Mater. Sci. Eng., 2002, 10: 319-329.

[5]

Saraev D., Miller R. E. Atomistic Simulation of Nanoindentation into Copper Multilayers[J]. Modelling Simul. Mater. Sci. Eng., 2005, 13: 1 089-1 099.

[6]

Tsuru T., Shibutani Yoji. Atomistic Simulations of Elastic Deformation and Dislocation Nucleation in Al under Indentation-induced Stress Distribution[J]. Modelling Simul. Mater. Sci. Eng., 2006, 14: S55-S62.

[7]

Tadmor E. B., Miller R., Phillips R. Nanoindentation and Incipient Plasticity[J]. J. Mater. Res., 1999, 14(6): 2 233-2 250.

[8]

Shenoy V. B., Miller R., Tadmor E. B. Nucleation of Dislocations beneath a Plane Strain Indenter[J]. J. Mech. Phys. Solids, 2000, 48: 649-673.

[9]

Qin Z. D., Wang H. T., Ni Y. S. Multiscale Simulations of FCC Al Nanoindentation[J]. Chin. Quarterly Mech., 2007, 28(1): 46-53.

[10]

Zeng F. L., Sun Y. Quasicontinuum Simulation of Nanoindentation of Nickel Film[J]. Acta Mechanica Solida Sin., 2006, 27(4): 341-345.

[11]

Shan D. B., Lin Y., Guo B. Multiscale Simulation of Surface Step Effects of Nanoindentation[J]. Mater. Sci. Eng. A, 2005, 412: 264-270.

[12]

Tadmor E. B., Oritz M., Phillips R. Quasicontinuum Analysis of Defects in Solids[J]. Philos. Mag., 1996, 73A: 1 529-1 563.

[13]

Tadmor E. B., Phillips R., Oritz M. Mixed Atomistic and Continuum Models of Deformation in Solid[J]. Langmuir., 1996, 12(12): 4 529-4 534.

[14]

Shenoy V. B., Miller R., Tadmor E. B., . Quasicontinuum Models of Interfacial Structure and Deformation[J]. Phys. Rev. Lett., 1998, 80: 742-745.

[15]

Shenoy V. B., Miller R., Tadmor E. B., . An Adaptive Finite Element Approach to Atomic-scale Mechanics: the Quasicontinuum Method[J]. J. Mech. Phys. Solids, 1999, 47: 611-642.

[16]

Miller R. E., Tadmor E. B. The Quasicontinuum Method: Overview, Applications and Current Directions[J]. Computer-Aided Mater Design, 2002, 9: 203-239.

[17]

Voter A. F., Chen S. P. Accurate Interatomic Potentials for Ni, Al and Ni3Al[C]. Mat. Res. Soc. Symp. Proc., 1987, 82: 175-180.

[18]

Kelchner C. L., Plimpton S. J., Hamilton J. C. Dislocation Nucleation and Defect Structure during Surface Indentation[J]. Phys. Rev. B, 1998, 58: 11 085-11 088.

[19]

Li Ju. AtomEye: An Efficient Atomistic Configuration Viewer[J]. Modelling Simul. Mater. Sci. Eng., 2003, 11: 173-177.

[20]

Gilvarry J. J. The Lindemann and Gruneisen Laws[J]. Phys. Rev., 1956, 102: 308-316.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/