Hydrothermal synthesis ultralong single-crystal Sb2S3 nanowires

Yun Liu , Hongyan Miao , Guoqiang Tan , Gangqiang Zhu

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (3) : 411 -414.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (3) : 411 -414. DOI: 10.1007/s11595-010-0013-3
Article

Hydrothermal synthesis ultralong single-crystal Sb2S3 nanowires

Author information +
History +
PDF

Abstract

This paper describes an ethylene glycol (EG)-assisted approach to the ultralong Sb2S3 nanowires, formed by a simple hydrothermal reaction between SbCl3 and Na2S in the presence of distilled water. Transmission electron microscopy and scanning electron microscopy studies indicate that these Sb2S3 nanowires possess a diameter around 200 nm and length up to 100 μm. High-resolution transmission electron microscopy and selected area electron diffraction studies reveal that each Sb2S3 nanowire is a single-crystal along the [001] direction. The possible formation mechanism of the nanowires was discussed. The effects of volume ratio of ethylene glycol/water on the morphology of Sb2S3 nanowires were also investigated. Diffuse reflectance spectrum result shows that the final products have an apparent blue shift by quantum size effect.

Keywords

nanostructures / chemical synthesis / electron microscopy / electron diffraction

Cite this article

Download citation ▾
Yun Liu, Hongyan Miao, Guoqiang Tan, Gangqiang Zhu. Hydrothermal synthesis ultralong single-crystal Sb2S3 nanowires. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(3): 411-414 DOI:10.1007/s11595-010-0013-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang Y., Duan X. F., Wei Q. Q., . Directed Assembly of One-dimensional Nanostructures into Functional Networks[J]. Science, 2001, 291: 630-633.

[2]

Pan Z. W., Dai Z. R., Wang Z. L. Nanobelts of Semiconducting Oxides[J]. Science, 2001, 291: 1 947-1 949.

[3]

Jun Y. W., Lee S. M., Kang N. J., . Controlled Synthesis of Multi-armed CdS Nanorod Architectures Using Monosurfactant System[J]. J. Am. Chem. Soc., 2001, 123: 5 150-5 151.

[4]

Ma C., Moore D., Li J., . Nanobelts, Nanocombs, and Nanowindmills of Wurtzite ZnS[J]. Adv. Mater., 2003, 15: 228-231.

[5]

Li L. S., Alivisatos A. P. Semiconductor Nanorod Liquid Crystals and Their Assembly on a Substrate[J]. Adv. Mater., 2003, 15: 408-411.

[6]

Srivastava S. K., Pramanik M., Palit D., . X-ray Diffraction, Topographical Studies, and Thermal Behavior of Layer-Type CdIn2S4−xSex (1.75⩽x⩽2.75) and Its Lithium Intercalation Compounds[J]. Chem. Mater., 2004, 16: 4 168-4 173.

[7]

Roy B., Chakraborty B. R., Bhattacharya R., . Electrical and Magnetic Properties of Antimony Sulphide (Sb2S3) Crystals and the Mechanism of Carrier Transport in It[J]. Solid State Commun., 1978, 25: 937-940.

[8]

Savadogo Mandal K. C. Studies on New Chemically Deposited Photoconducting Antimony Trisulphide Thin Films[J]. Sol. Energy Mater. Sol. Cells, 1992, 26: 117-136.

[9]

Hu H. M., Mo M. S., Yang B. J., . Solvothermal Synthesis of Sb2S3 Nanowires on a Large Scale[J]. J. Cryst. Growth, 2003, 258: 106-112.

[10]

Yu Y., Wang R. H., Chen Q., . High-Quality Ultralong Sb2S3 Nanoribbons on Large Scale[J]. J. Phys. Chem. B, 2005, 109: 23 312-23 315.

[11]

Hu H. M., Liu Z. P., Yang B. J., . Solvothermal Growth of Sb2S3 Microcrystallites with Novel Morphologies[J]. J. Cryst. Growth, 2004, 262: 375-382.

[12]

Christian P., O’Brien P. The Preparation of Antimony Chalcogenide and Oxide Nanomaterials[J]. J. Mater. Chem., 2005, 15: 4 949-4 951.

[13]

Wang H., Zhu J. J., Chen H. Y. Sonochemical Synthesis of Antimony Trisulfide Nanowhiskers[J]. Chem. Lett., 2002, 12: 1 242-1 243.

[14]

Cheng B., Samulski E. T. One-step, Ambient-temperature Synthesis of Antimony Sulfide (Sb2S3) Micron-size Polycrystals with a Spherical Morphology[J]. Mater. Res. Bull., 2003, 38: 297-301.

[15]

Yang J., Liu Y. C., Lin H. M., . A Chain Structure Nanotube: Growth and Characterization of Single Crystal Sb2S3 Nanotubes via a Chemical Vapor Transport Reaction[ J]. Adv. Mater., 2004, 16(8): 713-716.

[16]

Yang J., Zeng J. H., Yu S. H., . Pressure-Controlled Fabrication of Stibnite Nanorods by the Solvothermal Decomposition of a Simple Single-Source Precursor[J]. Chem. Mater., 2000, 12: 2 924-2 929.

[17]

Zheng X. W., Xie Y., Zhu L.Y., . Growth of Sb2 E 3 (E=S, Se) Polygonal Tubular Crystals via a Novel Solvent-Relief-Self-Seeding Process[J]. Inorg. Chem., 2002, 41: 455-461.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/