Fabrication of onion-like carbon using nanodiamond by annealing at lower temperature and vacuum

Qin Zou , Mingzhi Wang , Bin Lv , Yanguo Li , Hui Yu , Lianghua Zou , Yucheng Zhao

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (6) : 935 -939.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (6) : 935 -939. DOI: 10.1007/s11595-009-6935-y
Article

Fabrication of onion-like carbon using nanodiamond by annealing at lower temperature and vacuum

Author information +
History +
PDF

Abstract

Onion-like carbon (OLC) was fabricated by annealing nanodiamond at 1000 °C for 2 hours in low vacuum (1 Pa). The OLC was characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and differential scanning calorimetry (DSC). The experimental results show that the OLC exhibits similarity to the original nanodiamond particles in shape. The size of the OLC is found to be approximately 5 nm. The transformation mechanism of the OLC from nanodiamond was discussed also.

Keywords

nanodiamond / onion-like carbon / annealing

Cite this article

Download citation ▾
Qin Zou, Mingzhi Wang, Bin Lv, Yanguo Li, Hui Yu, Lianghua Zou, Yucheng Zhao. Fabrication of onion-like carbon using nanodiamond by annealing at lower temperature and vacuum. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(6): 935-939 DOI:10.1007/s11595-009-6935-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Saito Y., Okuda M., Yoshikawa T., Kasuya A., Nishiya Y. Correlation between Volatility of Rare-Earth Metals and Encapsulation of Their Carbides in Carbon Nanocapsules[J]. J. Phys. Chem., 1994, 98: 6696-6698.

[2]

Xu B. S., Tanaka S. I. Formation of Giant Onion-Like Fullerenes under Al Nanoparticles by Electron Irradiation[J]. Acta. Mater., 1998, 46(15): 5249-5257.

[3]

Ruoff R., Lorents D. C., Chan B., Malhotra R., Subramoney S. Single-Crystal Metals Encapsulated in Carbon Nanoparticles[ J]. Science, 1993, 259: 346-348.

[4]

Ugarte D. Curling and Closure of Graphitic Networks under Eletron-Beam Irradiation[J]. Nature, 1992, 359: 707-708.

[5]

Wang X. M., Xu B. S., Liu X. G., Jia H. S., Hideki I. The Raman Spectrum of Nano-Structured Onion-Like Fullerenes[ J]. Physica B, 2005, 357: 277-281.

[6]

Oku T., Hirano T., Kuno M., Kusunose T., Niihara K., Suganuma K. Synthesis, Atomic Structures and Properties of Carbon and Boron Nitride Fullerene Materials[J]. Mater. Sci. Eng., 2000, 74: 206-217.

[7]

Bubke K., Gnewuch H., Henpstead M., Hammer J., Green M. L. H. Optical Anisotropy of Dispersed Carbon Nanotubes Induced by an Electric Field[J]. Appl. Phys. Lett., 1997, 71(14): 1906-1908.

[8]

Harris P. J. F., Tsang S. C. Encapsulating Uranium in Carbon Nanoparticles Using a New Technique[J]. Carbon, 1998, 36: 1859-1861.

[9]

Chuvilin V. L. K. A. L., Butenko Y. V., Malkov I. Y., Titov V. M. Onion-Like Carbon from Ultra-Disperse Diamond[ J]. Chem. Phys. Lett., 1994, 222: 343-348.

[10]

Chen X. H., Deng F. M., Wang J. X., Yang H. S., Wu G. T., Zhang X. B., Peng J. C., Li W. Z. New Method of Carbon Onion Growth by Radio-Frequency Plasma-Enhanced Chemical Vapor Deposition[J]. Chem. Phys. Lett., 2001, 336: 201-204.

[11]

Sano N., Wang H., Alexandrou I., Chhowalla M., Teo K. B. K., Amaratunga G. A. J., Iimura K. Properties of Nano Carbon Particles Produced by an Arc Discharge in Water[J]. J. Appl. Phys., 2002, 92: 2783-2788.

[12]

Qiao Z. J., Li J. J., Zhao N. Q., Shi C. S., Nash P. Graphitization and Microstructure Transformation of Nanodiamond to Onion-Like Carbon[J]. Scripta Materialia, 2006, 54: 225-229.

[13]

Bulusheva L. G., Okotrub A. V., Kuznetsov V. L., Vyalikh D. V. Soft X-Ray Spectroscopy and Quantum Chemistry Characterization of Defects in Onion-Like Carbon Produced by Nanodiamond Annealing[J]. Diamond Related Materials, 2007, 16: 1222-1226.

[14]

Greiner N. R., Phillips D. S., Johnson J. D., Volk F. Diamonds in Detonation Soot[J]. Nature, 1988, 333: 440-442.

[15]

Kuznetsov V. L., Chuvilin A. L., Moroz E. M., Kolomiichuk V. N., Shaichutdinov S. K., Butenko Y. V., Malkov I. Y. Effect of Explosion Conditions on the Structure of Detonation Soots: Ultradisperse Diamond and Onion Carbon[J]. Carbon, 1994, 32: 873-882.

[16]

Barnard A. S., Russo S. P., Snook I. K. Structural Relaxation and Relative Stability of Nanodiamond Morphologies[J]. Diamond Relat. Mater., 2003, 12: 1867-1872.

[17]

Qian J., Pantea C., Huang J., Zerda T. W., Zhao Y. Graphitization of Diamond Powders of Different Sizes at High Pressure-High Temperature[J]. Carbon, 2004, 42: 2691-2697.

[18]

Zeng H., Zhu L., Hao G. M., Sheng R. S. Synthesis of Various Forms of Carbon Nanotubes by AC Arc Discharge[J]. Carbon, 1998, 36: 259-261.

[19]

Tuinstra F., Koenig J. L. Raman Spectrum of Graphite[J]. J. Chem. Phys., 1970, 53: 1126-1130.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/