Rietveld quantitative analysis of carbides precipitation in normalized-tempered 2.25Cr-1Mo-0.25V steel

Yongtao Zhang , Sixin Zhao , Jiamiao Liang , Hanqian Zhang , Jinfu Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (6) : 922 -926.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (6) : 922 -926. DOI: 10.1007/s11595-009-6922-3
Article

Rietveld quantitative analysis of carbides precipitation in normalized-tempered 2.25Cr-1Mo-0.25V steel

Author information +
History +
PDF

Abstract

The quantitative determination of the mass fractions of precipitates in steels is very difficult using traditional materials characterization techniques. The Rietveld full-pattern fitting algorithm was introduced to solve this problem. The precipitated multicomponents’ mass fraction of M3C, MC, M7C3 and M23C6 were evaluated precisely and relatively quickly. It is found evolution of carbides apparently occurs during tempering at high temperatures, and a two-step transformation mechanism is proposed for M7C3 during early tempering treatment. The method is an effective way on the investigation of precipitation kinetics, which may play a promising role in propertities’ enhancement and design of the heat-resistant steels.

Keywords

2.25Cr-1Mo-0.25V steel / rietveld quantitative analysis / precipitates

Cite this article

Download citation ▾
Yongtao Zhang, Sixin Zhao, Jiamiao Liang, Hanqian Zhang, Jinfu Li. Rietveld quantitative analysis of carbides precipitation in normalized-tempered 2.25Cr-1Mo-0.25V steel. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(6): 922-926 DOI:10.1007/s11595-009-6922-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Klueh R. L., Swindeman R. W. The Microstructure and Mechanical Properties of a Modified 2.25Cr-1Mo Steel[J]. Metall. Mater. Trans. A, 1986, 17(6): 1027-1034.

[2]

Janovec J. Thermal-induced Evolution of Secondary Phases in Cr-Mo-V Low Alloy Steels[J]. J. Mater. Sci., 2006, 41: 3425-3433.

[3]

Jannovec J., Výrostková A. Effect of Tempering on Development of Carbide Particles in 2.7 Cr-0.6 Mo-0.3 V Steel[J]. J. Mater. Sci., 1992, 27: 6564-6572.

[4]

Bhadeshia H. K. D. H. Design of Ferritic Creep-resistant Steels[J]. ISIJ Int., 2001, 41(6): 626-640.

[5]

Pigrova G. D. Effect of Long-Term Operation on Carbide Phases in Cr-Mo-V Steels[J]. Met. Sci. Heat Treat., 2003, 45(3): 84-87.

[6]

Maruyama K., Sawada K., Koike J. Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel[J]. ISIJ Int., 2001, 41(6): 641-653.

[7]

Abe F. Bainitic and Martensitic Creep-resistant Steels[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 305-311.

[8]

Bish D. L., Howard S. A. Quantitative Phase Analysis Using the Rietveld Method[J]. J. Appl. Crystallogr., 1988, 21: 86-91.

[9]

Chung F. H. Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. I. Matrix-flushing Method for Quantitative Multicomponent Analysis[J]. J. Appl. Crystallogr., 1974, 7: 519-525.

[10]

Rietveld H. M. Line Profiles of Neutron Powder-diffraction Peaks for Structure Refinement[J]. Acta. Cryst., 1967, 22: 151-152.

[11]

Young R. A. The Rietveld Method[M], 1996 Oxford Oxford University Press 16-30.

[12]

Yan F., Shi H. S., Fan J. F., . An Investigation of Secondary Carbides in the Spray-formed High Alloyed Vanadis 4 Steel during Tempering[J]. Mater. Charact., 2008, 59(7): 883-889.

[13]

K Kaneko, S Matsumura, A Sadakata, et al. Characterization of Carbides at Different Boundaries of 9Cr-steel[J]. Mater. Sci. Eng.,A, 2004, (374): 82–89

[14]

Wu C., Sahajwalla V., Krauklis P. The Effect of Austenitizing Process on the Hardening Behaviour of Cr-Mo-Mn-C Air-hardening Cast Tool Steel[J]. ISIJ Int., 1996, 36(3): 347-353.

[15]

Yan F., Shi H. S., Jin B. Z., . Microstructure Evolution during Hot Rolling and Heat Treatment of the Spray Formed Vanadis 4 Cold Work Steel[J]. Mater. Charact., 2008, 59(8): 1007-1014.

[16]

K W Andrews, H Hughes, D J Dyson. Constitution Diagrams For Cr-Mo-V Steels[J]. J. Iron. Steel Int., 1972: 337–350

[17]

B A Senior. A Critical Review of Precipitation Behaviour in 1 Cr-Mo-V Rotor Steels[J]. Mater. Sci. Eng., A, 1988, (103): 263–271

[18]

Janovec J., Vyrostkova A., Svoboda M. Influence of Tempering Temperature on Stability of Carbide Phases in 2.6Cr-0.7Mo-0.3V Steel with Various Carbon Content[J]. Metall. Mater. Trans. A, 1994, 25A: 267-275.

[19]

E Smith and J Nutting. The Tempering of Low-Alloy Creep-Resistant Steels Containing Chromium, Molybdenum, and Vanadium[J]. J. Iron. Steel Int., 1957, (192): 314–329

[20]

Wan N., Xiong W. H., Suo J. P. Mathematical Model for Tempering Time Effect on Quenched Steel Based on Hollomon Parameter[J]. J. Mater. Sci. Technol., 2005, 21(6): 803-806.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/