Nanostructuring and thermoelectric properties of bulk N-type Mg2Si

Meijun Yang , Lianmeng Zhang , Qiang Shen

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (6) : 912 -916.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (6) : 912 -916. DOI: 10.1007/s11595-009-6912-5
Article

Nanostructuring and thermoelectric properties of bulk N-type Mg2Si

Author information +
History +
PDF

Abstract

Preparation and thermoelectric properties of nanostructured n-type Mg2Si bulk materials were reported. Nanosized Mg2Si powder was obtained by mechanical milling of the microsized Mg2Si powder prepared by solid-state reaction. The bulk materials with 30 nm and 5 µm were prepared by spark plasma sintering of the nanosized and microsized Mg2Si powder, respectively. Both the samples show n-type conduction and the Seebeck coefficient of the sintered samples increase determinately with the grain size decrease from 5 µm to 30 nm. On the other hand, the electrical and thermal conductivity decrease with the decrease of grain size. Accordingly, decreasing their grain size increases their thermoelectric-figure-of-merit. A maximum thermoelectric figure of merit of 0.36 has been obtained for the nanostuctured Mg2Si sample at 823 K, which is 38% higher than that of microsized Mg2Si bulk materials and higher than results of other literatures. It could be expected that the properties of the nanocomposites could be further improved by doping optimization.

Keywords

emiconductor / thermoelectric effects / Mg2Si / nanostructuring

Cite this article

Download citation ▾
Meijun Yang, Lianmeng Zhang, Qiang Shen. Nanostructuring and thermoelectric properties of bulk N-type Mg2Si. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(6): 912-916 DOI:10.1007/s11595-009-6912-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jun-ichi T, Hiroyasu K. Thermoelectric Properties of Sb-doped Mg2Si Semiconductors[J]. Intermetallics, 2007, (15): 1202–1207

[2]

Zhang L. M., Gang Y. G. Synthesis of Mg2Si1−xGex Thermoelectric Compound by Solid Phase Reaction[J]. Mater. Sci. Eng B, 2001, 86: 195-199.

[3]

Yoshinaga M., Iida T. Bulk Crysta Growth of Mg2Si by the Vertical Bridgmam Method[J]. Thin Solid Film, 2004, 461: 86-89.

[4]

Joseph P. H., Christopher M. T., Donald T. Morelli, Thermopower Enhancement in PbTe with Pb Precipitates [J]. J. Appl. Phys., 2005, 98: 063703

[5]

Martin J., Nolas G. S. PbTe Nanocomposites Synthesized from PbTe Nanocrystals [J]. Appl. Phys. Lett., 2007, 90: 222-112.

[6]

Joseph P. H., Christopher M. T., Donald T. M. Thermopower Enhancement in Lead Telluride Nanostructures[J]. Physical Review B., 2004, 70: 115334

[7]

Mi J. L., Zhao X. B. Improved Thermoelectric Figure of Merit in N-type CoSb3 Based Nanocomposites [J]. Appl. Phys. Lett., 2007, 91: 172116

[8]

Bhandari C M. Thermoelectric Transport Theory[M]. CRC Handbook of Thermoelectrics, edited by D M Rowe, Chap.1: 27

[9]

Wang L., Qin X. Y. The Effect of Mechanical Milling on the Formation of Nanocrystalline Mg2Si through Solid-state Reaction [J]. Scripta Materialia, 2003, 49: 243-248.

[10]

Riffel M., Schilz J. Mechanical Alloying of Mg2Si [J]. Scripta Metallurgica et Materialia, 1995, 32(12): 1951-1956.

[11]

Wang L., Qin X. Y. Fabrication and Mechanical Properties of Bulk Nanocrystalline Intermetallic Mg2Si [J]. Material Science and Engineering A, 2007, 459: 216-222.

[12]

Lee C. H., Lee S. H. Fabrication of Mg2Si Thermoelectric Materials by Mechanical Alloying and Spark Plasma Sintering Process[J]. J. Nanosci. Nanotech., 2006, 6: 3429-3432.

[13]

Riffel M, J Schilz. Influence of Production Parameters on the Thermoelectric Properites of Mg2Si[C]. 16th International Conference on Thermoelectrics, 1997: 283–286

[14]

Mi J. L., Zhu T. J., Zhao X. B. Nanostructuring and Thermoelectric Properties of Bulk Skutterudite Compound CoSb3 [J]. J. Appl. Phys., 2007, 101: 054314

[15]

Kishimoto K., Koyanagi T. Preparation of Sintered Degenerate N-type PbTe with a Small Grain Size and its Thermoelectric Properties [J]. J. Appl. Phys., 2002, 92: 2544

[16]

Han L., Tang X. F., Su X. L., Zhang Q. J. Preparation and Thermoelectric Properties of High-performance Sb Additional Yb0.2Co4Sb12+y Bulk Materials with Nanostructure [J]. Applied Physics Letters, 2008, 92: 202114

[17]

Bhandari C M. M inimizing the Thermal Conductivity[M]. CRC Handbook of Thermoelectrics, edited by D M Rowe, Chap. 1: 55

[18]

Nan C. W., Birringer R. Determining the Kapitza Resistance and the Thermal Conductivity of Polycrystals: A Sample Model[J]. Phys. Rev. B, 1998, 57: 8264

[19]

Ni H. L., Zhao X. B. Synthesis and Thermoelectric Properties of Bi2Te3 Based Nanocomposites [J]. J. Alloys Compd., 2005, 397: 317-321.

[20]

Jiang H. Y. Study on the Solid-state Reaction Synthesis, Preparation and Thermoelectric Properties of Mg-Si Based Compounds[D], 2003 Wuhan Wuhan University of Technology 73

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/