Possible origins for paramagnetic-ferromagnetic and insulator-metal transitions as well as colossal magnetoresistance in manganites

Jianqing Li , Songliu Yuan , Zaoming Tian

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (6) : 903 -906.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (6) : 903 -906. DOI: 10.1007/s11595-009-6903-6
Article

Possible origins for paramagnetic-ferromagnetic and insulator-metal transitions as well as colossal magnetoresistance in manganites

Author information +
History +
PDF

Abstract

Systematical investigations of zero-field resistivity, magnetoresistance and magnetization were performed for a typical manganese compound La2/3Ca1/3MnO3. It is argued that the common origin for insulator-metal and paramagenetic ferromagnetic-transitions as well as colossal magnetoresistance is due to the formation of ferromagnetic clusters in the paramagnetic background. The transition to metallic state is resulted from percolation of ferromagnetic metallic clusters, while the colossal magnetoresistance is due to the application of magnetic field, which accelerates the growth of ferromagnetic metallic clusters and causes the shift of the onset temperature for the metallic percolation to higher temperature. Based on the random resistor network model, the zero-field resistivity versus temperature dependence is simulated by using experimental parameters, and experimental data well agree with those in whole temperature range, giving a strong support to our approach.

Keywords

percolation / colossal magnetoresistance / insulator-metal transition

Cite this article

Download citation ▾
Jianqing Li, Songliu Yuan, Zaoming Tian. Possible origins for paramagnetic-ferromagnetic and insulator-metal transitions as well as colossal magnetoresistance in manganites. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(6): 903-906 DOI:10.1007/s11595-009-6903-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R von Helmolt. Giant Negative Magnetoresistance in Perovskite La2/ 3Ca1/ 3MnO3 Ferromagnetic Films[J]. Phys. Rev.Lett., 1993, (71): 2331–2340

[2]

Jin S., Tiefel T. H., McCormack M., . Thousansfold Change in Resistivity in Magnetoresistive La2Ca2Mn2O Films[J]. Science, 1994, 264: 413-420.

[3]

Coey J. M. D., Viret M., Molnar S. Mixed-valence Manganites[J]. Adv. in Phys., 1997, 48: 167-293.

[4]

Yuan S., Liu J., Xia Z., . Correction to the Metal-Insulator Transition Temperature due to Cation Size and Strain Effects for Colossal Magnetoresistance Perovskites[J]. Chin.Phys.Lett., 2002, 19(11): 1675-1678.

[5]

Li J., Yuan S. Transport-magnetism Correlation and Colossal Magnetoresistance in Mixed-valent Manganites[J]. Wuhan Univercity of Technology-Mater. Sci. Ed., 2005, 20(2): 49-52.

[6]

YUAN Songliu Zhong Q H, Debnath D, et al. Unusual Transport Properties Near the Insulator-Metal Transition in Colossal Magnetoresistive Manganites[J]. Chin.Phys. Lett., 2005, (22): 207–210

[7]

J Q Li and S L Yuan. Unusual Magnetic and Transport Properties above the Curie Temperature in La2/3Ca1/3MnO3[J]. Solid State Communications, 2005, (134): 295–298

[8]

R B Griffiths. Nonanalytic Behavior above the Critical Point in a Random Ising Ferromagnet [J]. Phys. Rev. Lett., 1969, (23): 17–19

[9]

Bray A. J. Nature of the Griffiths phase[J]. Phys. Rev. Lett., 1987, 59: 586-589.

[10]

Zener C. Interaction between the d-Shells in the Transition Metals [J]. Phys. Rev., 1951, 82: 403-405.

[11]

Stauffer D., Aharony A. Introduction to Percolation Theory[M], 1994 2 London Tayloe & Francis 76

[12]

Shklovskii B. I., Efros A. L. Electronic Properties of Doped Semiconductors[M], 1984 New York Springer 60

[13]

S L Yuan, Li Z Y, Peng G, et al. Monte Carlo Simulation of Colossal Magnetoresistance in Doped Manganese Perovskites[J]. Phys. Condens. Matter., 2001, (13): 509–514

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/