In-situ formation of spinel fibers in MgO-C refractory matrixes

Zhaohui Xie , Fangbao Ye

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (6) : 896 -902.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (6) : 896 -902. DOI: 10.1007/s11595-009-6896-1
Article

In-situ formation of spinel fibers in MgO-C refractory matrixes

Author information +
History +
PDF

Abstract

In-situ magnesia-rich spinel fiber was formed resulting from the addition of ferrocene into MgO-C refractory matrixes. The formation of in-situ spinel fiber was detected to start at 1300 °C. The amount, diameter and length of the fibers increased with rising temperature. Ferrocene may have catalytic effects on the growth of the fibers in two aspects. First, the reaction between MgO and C and the decomposition of Al4C3 may be catalyzed at high temperature. Suitable concentration gaseous phase is then created for vapor-vapor reaction which could result in the in-situ formation of fibers. Second, Fe nanoparticle produced from ferrocene can act as catalytic droplets and catalyze the growth of the fibers. The fibers are formed via the vapor-liquid-solid and vapor-solid mechanisms. In terms of chemical thermodynamics, the partial pressure of CO and Mg(g) are found to play an important role in the in-situ fibers formation. Different concentration of vapors affects the size, amount and composition of the fibers at different temperatures. The mechanical properties of MgO-C brick was found to be improved by ferrocene addition.

Keywords

spinel fiber / in-situ formation / ferrocene / MgO-C brick / refractory

Cite this article

Download citation ▾
Zhaohui Xie, Fangbao Ye. In-situ formation of spinel fibers in MgO-C refractory matrixes. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(6): 896-902 DOI:10.1007/s11595-009-6896-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ganesh I., Bhattacharjee S., Saha B. P., . An Efficient MgAl2O4 Spinel Additive for Improved Slag Erosion and Penetration Resistance of High-Al2O3 and MgO-C refractories [J]. Ceramics International, 2002, 28(3): 245-253.

[2]

Nandi P., Garg A., Singh R. K., Chattoraj B. D. Effects of Cement and Magnesia Fines on in Situ Spinel Formation in Alumina-magnesia Castable[J]. Advances in Applied Ceramics, 2005, 104(1): 83-88.

[3]

Mukhopadhyay S., Das Poddar P. K. Effect of Preformed and in situ Spinels on Microstructure and Properties of a Low Cement Refractory Castable[J]. Ceramics International, 2004, 30(3): 369-380.

[4]

Sarpoolaky H., Ahari K. G., Lee W. E. Influence of In-situ Phase Formation on Microstructural Evolution and Properties of Castable Refractories[J]. Ceramics International, 2002, 28(5): 487-493.

[5]

Aksel C., Warren P. D. Thermal Shock Parameters [R, R‴ and R″″] of Magnesia-spinel Composites[J]. Journal of the European Ceramic Society, 2003, 23(2): 301-308.

[6]

Zhang S., Marriott N. J., Lee W. E. Thermochemistry and microstructures of MgO-C Refractories Containing Various Antioxidants[J]. Journal of the European Ceramic Society, 2001, 21(8): 1037-1047.

[7]

Bavand-Vandchali M., Sarpoolaky H., Golestani-Fard F., . Atmosphere and Carbon Effects on Microstructure and Phase Analysis of in-situ Spinel Formation in MgO-C Refractories Matrix[J]. Ceramics International, 2009, 35(2): 861-868.

[8]

Bavand-Vandchali M., Golestani-Fard F., Sarpoolaky H., . The Influence of in situ Spinel Formation on Microstructure and Phase Evolution of MgO-C Refractories[J]. Journal of the European Ceramic Society, 2008, 28(3): 563-569.

[9]

Zhang S. Next Generation Carbon-containing Refractory Composites [J]. Industrial Ceramics, 2007, 27(1): 15-20.

[10]

Bernhauer M., Braun M., Huttinger K. Kinetics of Mesophase Formation in a Stirred Tank Reactor and Properties of the Products-V. Catalysis by Ferrocene [J]. Carbon, 1994, 32(6): 1073-1085.

[11]

Anna M., Albert G. N., David P. B., . Single-walled Carbon Nanotube Synthesis Using Ferrocene and Iron Pentacarbonyl in a Laminar Flowreactor[J]. Chemical Engineering Science, 2006, 61(13): 4393-4402.

[12]

Nyamori V O, Mhlanga S D, Coville, N J. The Use of Organometallic Transition Metal Complexes in the Synthesis of Shaped Carbon Naonmaterials[J]. Journal of Organometallic Chemistry, 2008, doi: 10.1016/j. jorganchem. 2008. 04. 003

[13]

Guha J P, Smith J D. Reaction Chemistry and Microstructure Development of MgO-C refractories Containing Metal Antioxidants[C]. In: UNITECR’05 Proceedings, Orland, USA, 2005: 97–99

[14]

Yamaguchi A. Thermochemical Analysis for Reaction Processes of Aluminum and Aluminum-compounds in Carbon-containing Refractories[J]. Taikabutsu Overseas, 1987, 7(2): 4-13.

[15]

Kashcheev I. D., Serova L. V. Interaction between Aluminum and Periclase-carbon Components[J]. Refractories and Industial Ceramics, 2006, 47(2): 125-127.

[16]

Li R., Pan W., Masamichi S. Kinetics and Mechanism of Carbothermic Reduction of Magnesia [J]. Metallurgical and Materials Transactions B, 2003, 34(2): 433-437.

[17]

Hashimoto S., Yamaguchi A. Synthesis of MgAl2O4 Whiskers by an Oxidation-reduction Reaction[J]. Journal of the American Ceramic Society, 1996, 79(2): 491-494.

[18]

Yamaguchi A. Control of Oxidation-reduction in MgO-C Refractories[J]. Taikabutsu Overseas, 1984, 4(1): 332-337.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/