Thermal decomposition and kinetics of rigid polyurethane foams derived from sugarcane bagasse

Yongbin Yan , Jingwei Xu , Hao Pang , Rongli Zhang , Bing Liao

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (5) : 776 -780.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (5) : 776 -780. DOI: 10.1007/s11595-009-5776-z
Article

Thermal decomposition and kinetics of rigid polyurethane foams derived from sugarcane bagasse

Author information +
History +
PDF

Abstract

Rigid polyurethane foams were fabricated with five kinds of liquefied sugarcane bagasse polyols (LBP). The foams derived from sugarcane bagasse were investigated by thermogravimetric analysis (TGA), and the thermal degradation data were analyzed using the Coast-Redfern method and Ozawa method to obtain the reaction order and activation energy. The results indicate that the sugarcane bagasse-foams exhibit an excellent heat-resistant property, whereas their pyrolysis procedures are quite complicated. The reaction as first order only takes place from 250 to 400 °C, and the pyrolysis activation energies vary from 20 to 140 kJ/mol during the whole pyrolysis process.

Keywords

rigid polyurethane foams / thermal decomposition / thermogravimetric analysis / decomposition kinetics / sugarcane bagasse

Cite this article

Download citation ▾
Yongbin Yan, Jingwei Xu, Hao Pang, Rongli Zhang, Bing Liao. Thermal decomposition and kinetics of rigid polyurethane foams derived from sugarcane bagasse. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(5): 776-780 DOI:10.1007/s11595-009-5776-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shiraishi N., Kishi H. Wood-phenol Adhesives Prepared from Carboxymethylated Wood[J]. J. Appl. Polym. Sci., 1986, 32(1): 3189-3209.

[2]

Demirbas A. Conversion of Biomass Using Glycerin to Liquid Fuel for Blending Gasoline as Alternative Engine Fuel[J]. Energ. Convers. Manage., 2000, 41(16): 1741-1748.

[3]

Ucar G., Fengel D. Characterization of the Acid Pretreatment for the Enzymatic Hydrolysis of Wood[J]. Holzforschung, 1988, 42(3): 141-148.

[4]

Alma M. H., Yoshioka M., Yao Y. G., . The Preparation and Flow Properties of HCl Catalyzed Phenolated Wood and its Blends with Commercial Novolak Resin[J]. Holzforschung, 1996, 50(1): 85-90.

[5]

Yao Y. G., Yoshioka M., Shiraishi N. Rigid Polyurethane Foams from Combined Liquefaction Mixtures of Wood and Starch[J]. Mokuzai Gakkaishi, 1995, 41(7): 659-668.

[6]

Kurimoto Y., Takeda M., Koizumi A., . Mechanical Properties of Polyurethane Films Prepared from Liquefied Wood with Polymeric MDI[J]. Bioresource Technol., 2000, 74(2): 151-157.

[7]

Ge J. J., Zhong W., Guo Z. R., . Biodegradable Polyurethane Materials from Bark and Starch. I. Highly Resilient Foams[J]. J. Appl. Polym. Sci., 2000, 77(12): 2575-2580.

[8]

Pang H., Liu Y. S., Liao B., . Study on Preparation of Rigid Polyurethane Foam from Bagasse Polyol[J]. Chemistry and Industry of Forest Products, 2006, 26(2): 57-60.

[9]

Ge J. J., Wu R., Deng B. L., . Studies on the Biodegradable Polyurethane Materials Based on Bagasse(I) the Liquefaction of Bagasse and Preparation of Polyether Ester Polyol[J]. Polymer Materials Science and Engineer, 2003, 19(2): 194-198.

[10]

Petrovi Z. S., Zavargo Z., Flyn J. H., . Thermal Degradation of Segmented Polyurethanes[J]. J. Appl. Polym. Sci., 1994, 51(6): 1087-1095.

[11]

Levchik S. V., Weil E. D. Thermal Decomposition, Combustion and Fire-retardancy of Polyurethanes-a Review of the Recent Literature[J]. Polym. Int., 2004, 53(11): 1585-1610.

[12]

Ye S, Zhou D W. The Heat-resistance of Urethane-Modified Polyisocyanurate Foams[J]. Polyurethane Industry, 1992, (4): 43–45

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/