Homogeneous detection of human IgG by gold nanoparticle probes

Qihua Cao , Hong Yuan , Ruxiu Cai

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (5) : 772 -775.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (5) : 772 -775. DOI: 10.1007/s11595-009-5772-3
Article

Homogeneous detection of human IgG by gold nanoparticle probes

Author information +
History +
PDF

Abstract

A simple, and homogeneous detection system for human IgG based on the optical properties of aggregated gold nanoparticles probes were investigated. When gold nanoparticles with about 13 nm in diameter were modified by goat anti-human IgG, the addition of human IgG could change the absorption of colloidal gold solution, and the absorption intensity at 740 nm depended on the amount of human IgG. The aggregation of gold nanoparticles was also validated using transmission electron microscopy (TEM). A series of experiments were carried out to study the effects of pH value, the reaction temperature, and non-specific adsorption on the assay. A dynamic range of 10–500 µg/3 mL human IgG was observed. The new bioassay could be used for the rapid and homogeneous detection of antibodies in bioanalytical chemistry.

Keywords

bioassay / human IgG / gold nanoparticles

Cite this article

Download citation ▾
Qihua Cao, Hong Yuan, Ruxiu Cai. Homogeneous detection of human IgG by gold nanoparticle probes. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(5): 772-775 DOI:10.1007/s11595-009-5772-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Diamandis E. P., Christopoulos T. K. Immunoassay[M], 1996 London Academic Press 1-3.

[2]

Chard T. An Introduction to Radioimmunoassay and Related Techniques[M], 1982 Amsterdam Elsevier Biomedical Press

[3]

Lequin R. M. Enzyme Immunoassay (EIA)/Enzyme-linked Immunosorbent Assay (ELISA)7[J]. Clinical Chemistry, 2005, 51: 2415-2418.

[4]

Kelly K. L., Coronado E., Zhao L. L., . The Optical Properties of Metal Nanoparticles: the Influence of Size, Shape, and Dielectric Environment[J]. J. Phys. Chem. B, 2003, 107: 668-677.

[5]

Stewart M. E., Anderton C. R., Thompson L. B., . Nanostructured Plasmonic Sensors[J]. Chem. Rev., 2008, 108: 494-521.

[6]

Elghanian R., Storhoff J. J., Mucic R. C., . Selective Colorimetric Detection of Polynucleotides Based on the Distance-dependent Optical Properties of Gold Nanoparticles[J]. Science, 1997, 277: 1078-1081.

[7]

Reynolds R. A., Mirkin C. A., Letsinger R. L. Homogeneous, Nanoparticle-based Quantitative Colorimetric Detection of Oligonucleotides[ J]. J. Am. Chem. Soc., 2000, 122: 3795-3796.

[8]

Han M. S., Lytton-Jean A. K. R., Mirkin C. A. A Gold Nanoparticle Based Approach for Screening Triplex DNA Binders[J]. J. Am. Chem. Soc., 2006, 128: 4954-4955.

[9]

Wang Z. X., Levy R., Fernig D. G., . Kinase-catalyzed Modification of Gold Nanoparticles: a New Approach to Colorimetric Kinase Activity Screening[J]. J. Am. Chem. Soc., 2006, 128: 2214-2215.

[10]

Schofield C. L., Field R. A., Russell D. A. Glyconanoparticles for the Colorimetric Detection of Cholera Toxin[J]. Anal. Chem., 2007, 79: 1356-1361.

[11]

Lin S. Y., Liu S. W., Lin C. M., . Recognition of Potassium Ion in Water by 15-Crown-5 Functionalized Gold Nanoparticles[ J]. Anal. Chem., 2002, 74: 330-335.

[12]

Grabar K. G., Freeman R. G., Hommer M. B., . Preparation and Characterization of Au Colloid Monolayers[J]. Anal. Chem., 1995, 67: 735-743.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/