Fabrication of isotropic pyrocarbon at 1400 °C by thermal gradient chemical vapor deposition apparatus

Lingjun Guo , Dongsheng Zhang , Kezhi Li , Hejun Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (5) : 728 -731.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (5) : 728 -731. DOI: 10.1007/s11595-009-5728-7
Article

Fabrication of isotropic pyrocarbon at 1400 °C by thermal gradient chemical vapor deposition apparatus

Author information +
History +
PDF

Abstract

An experiment was designed to prepare isotropic pyrocarbon by thermal gradient chemical vapor deposition apparatus. The deposition was performed under ambient atmosphere at 1400 °C, with natural gas volume flow of 3.5 m3/h for 80 h. The results show that the thickness and the bulk density of the deposit are about 1.95 g/cm3 and 10 mm, respectively. The microstructure of the deposit was examined by polarized light microscopy and scanning electron microscopy, which shows that the deposit is constituted of sphere isotropic pyrocarbon, pebble pyrocarbon and laminar pyrocarbon.

Keywords

isotropic pyrocarbon / chemical vapor deposition / laminar pyrocarbon / pebble pyrocarbon

Cite this article

Download citation ▾
Lingjun Guo, Dongsheng Zhang, Kezhi Li, Hejun Li. Fabrication of isotropic pyrocarbon at 1400 °C by thermal gradient chemical vapor deposition apparatus. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(5): 728-731 DOI:10.1007/s11595-009-5728-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Reznik B., Hüttinger H.J. On the Terminology for Pyrolytic Carbon[J]. Carbon, 2002, 40(4): 621-624.

[2]

Zhang W.G. Chemical Vapor Deposition: from Hydrocarbon to Carbonaceous Materials[M], 2007 Beijing Beijing Science Press 189

[3]

Zhao J. G., Li K. Z., Li H. J., . The Influence of Thermal Gradient on Pyrocarbon Deposition in Carbon Carbon Composites during the CVI Process[J]. Carbon, 2006, 44(4): 786-791.

[4]

Oberlin A. Pyrocarbon[J]. Carbon, 2000, 40(1): 7-24.

[5]

Benzinger W., Hüttinger H. J. Chemical Vapor Infiltration of Pyrocarbon: I. Some Kinetic Considerations[J]. Carbon, 1996, 34(12): 1465-1471.

[6]

Benzinger W., Becker A., Hüttinger K. J. Chemistry and Kinetics of Chemical Vapour Deposition of Pyrocarbon: I. Fundamentals of Kinetics and Chemical Reaction Engineering[ J]. Carbon, 1996, 34(8): 957-966.

[7]

Becker A., Hüttinger K.J. Chemistry and Kinetics of Chemical Vapor Deposition of Pyrocarbon-IV Pyrocarbon Deposition from Methane in the Low Temperature Regime[J]. Carbon, 1998, 36(3): 213-224.

[8]

Becker A., Hüttinger K.J. Chemistry and Kinetics of Chemical Vapor Deposition of Pyrocarbon-V Influence of Reactor Volume/Deposition Surface Area Ratio[J]. Carbon, 1998, 36(3): 225-232.

[9]

Dong G. L., Hüttinger K.J. Consideration of Reaction Mechanisms Leading to Pyrolytic Carbon of Different Textures[J]. Carbon, 2002, 40(14): 2515-2528.

[10]

Delhaes P. Chemical Vapor Deposition and Infiltration Processes of Carbon Materials[J]. Carbon, 2002, 40(2): 641-657.

[11]

Feron O., Langlais F., Naslain R., . On the Kinetic and Microstructural Transitions in the CVD of Pyrocarbon from Propane[J]. Carbon, 1999, 37(9): 1343-1497.

[12]

Pauw V.D., Kalhöfer S., Gerthsen D. Influence of the Deposition Parameters on the Texture of Pyrolytic Carbon Layers Deposited on Planar Substrates[J]. Carbon, 2004, 42(2): 279-286.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/