Influence of thickness on the properties of solution-derived LiMn2O4 thin films

Xianming Wu , Shang Chen , Zeqiang He , Mingyou Ma , Jianben Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (5) : 706 -710.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (5) : 706 -710. DOI: 10.1007/s11595-009-5706-0
Article

Influence of thickness on the properties of solution-derived LiMn2O4 thin films

Author information +
History +
PDF

Abstract

LiMn2O4 thin films of different thickness were derived from solution deposition and heat treated by rapid thermal annealing. The phase identification and surface morphology were studied by X-ray diffraction and scanning electron microscopy. The electrochemical properties of the films were examined by galvanostatic charge-discharge experiments and electrochemical impedance spectroscopy. LiMn2O4 thin films of different thickness derived from solution deposition and rapid thermal annealing are homogeneous and crack free with the grain size between 20 nm and 50 nm. The specific capacity of these films is between 42 and 47 µAh·cm2·µm−1. The capacity decreases with the increase of discharge current density. The capacity loss per cycle increases from 0.012% to 0.16% after being cycled 50 times as the film thickness increases from 0.18 µm to 1.04 µm. The lithium diffusion coefficients of these films are in the same order of 10−11 cm2·s−1.

Keywords

lithium manganese oxides / thin films / diffusion / electrochemical properties

Cite this article

Download citation ▾
Xianming Wu, Shang Chen, Zeqiang He, Mingyou Ma, Jianben Liu. Influence of thickness on the properties of solution-derived LiMn2O4 thin films. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(5): 706-710 DOI:10.1007/s11595-009-5706-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim H. K., Seong T. Y., Yoon Y. S. Characteristics of Rapid-thermal-annealed LiNi1−xCoxO2 Cathode Films for All-Solid-State Rechargeable Thin Film Microbatteries[J]. Thin Solid Films, 2004, 447–448: 619-625.

[2]

Choi W. G., Yoon S. G. Structural and Electrical Properties of LiCoO2 Thin-Film Cathodes Deposited on Planar and Trench Structures by Liquid-delivery Metalorganic Chemical Vapour Deposition[J]. J. Power Sources, 2004, 125: 236-241.

[3]

Liao C. L., Lee Y. H., Yu H. C., . Structure Characterization and Electrochemical Properties of RF Sputtered Lithium Nickel Cobalt Oxide Thin Films[J]. Electrochim. Acta, 2004, 50: 461-466.

[4]

Rho Y., Kanamura T. Fabrication of Thin Film Electrodes for All Solid State Rechargeable Lithium Batteries[J]. J. Electroanal. Chem., 2005, 559: 69-75.

[5]

Das S. R., Istevao R., Fachini S. B., . Structural and Electrochemical Properties of Nanocrystalline LixMn2O4 Thin Film Cathodes (x=1.0−1.4)[J]. J. Power Sources, 2006, 158: 518-523.

[6]

Shih F. Y., Fung K. Z. Effect of Chitosan on Stabilization of Acetates-containing Solution: a Novel Precursor for LiMn2O4 Film Deposition[J]. J. Power Sources, 2006, 159: 1370-1376.

[7]

Dokko K., Anzue N., Mohamedi M., . Raman Spectro-electrochemistry of LiCoxMn2−xO4 Thin Film Electrodes for 5 V Lithium Batteries[J]. Electrochem. Commun., 2004, 6: 384-386.

[8]

Moon H. S., Park J. W. Improvement of Cyclability of LiMn2O4 Thin Films by Transition-Metal Substitution[J]. J. Power Sources, 2003, 119–121: 717-720.

[9]

Chung K. Y., Kim K. B. Investigations into Capacity Fading as a Result of a Jahn-Teller Distortion in 4 V LiMn2O4 Thin Film Electrodes[J]. Electrochim. Acta, 2004, 49: 3327-3337.

[10]

Shih F. Y., Fung K. Z. Effect of Annealing Temperature on Electrochemical Performance of Thin-film LiMn2O4 Cathode[ J]. J. Power Sources, 2006, 159: 179-185.

[11]

Tang S. B., Lai M. O., Lu L. Properties of Nano-Crystalline LiMn2O4 Thin Films Deposited by Pulsed Laser Deposition[ J]. Electrochim. Acta, 2006, 52: 1161-1168.

[12]

Wu X. M., He Z. Q., Xu M. F., . Characterization and Electrochemical Properties of LiMn2O4 Thin Films Prepared by Soluton Deposition[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2006, 21: 54-56.

[13]

Wu X. M., He Z. Q., Ma M. Y., . Influence of the Processing Conditions on the Morphology of Solution-deposited LiMn2O4 Thin Films by Spin Coating[J]. J. Functional Mater., 2006, 37: 155-159.

[14]

Joshi P. C., Krupanidhi S. B. Structural and Electrical Studies on Rapid Thermally Processed Ferroelectric Bi4Ti3O12 Thin Films by Metallo-organic Solution Deposition[J]. J. Appl. Phy., 1992, 72: 5827-5833.

[15]

Ho C., Raistrick I. D., Huggins R. A. Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films[J]. J. Electrochem. Soc., 1980, 127: 343-350.

[16]

Funabiki A., Inaba M., Ogumi Z., . Impedance Study on the Electrochemical Lithium Intercalation into Natural Graphite Powder[J]. J. Electrochem. Soc., 1998, 145: 172-178.

AI Summary AI Mindmap
PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/