The future resources for eco-building materials: II. Fly ash and coal waste

Hui Li , Delong Xu

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (4) : 667 -672.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (4) : 667 -672. DOI: 10.1007/s11595-009-4667-7
Article

The future resources for eco-building materials: II. Fly ash and coal waste

Author information +
History +
PDF

Abstract

To use fly ash and coal waste effectively, the current technologies for reprocessing and recycling these wastes into eco-building materials were reviewed, such as utilizing fly ash as the component of fly ash cement and low heat cement after the processes of separation, removal of carbon remains and fine comminution, calcining coal waste into kaolin and meta-kaolin with suspension technology, and preparing clinkerless alkali-activated geopolymer materials with fly ash and meta-kaolin.

Keywords

fly ash / coal waste / reprocessing / eco-building materials

Cite this article

Download citation ▾
Hui Li, Delong Xu. The future resources for eco-building materials: II. Fly ash and coal waste. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(4): 667-672 DOI:10.1007/s11595-009-4667-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Iyer R. The Surface Chemistry of Leaching Coal Fly Ash[J]. Journal of Hazardous Materials, 2002, 93(35): 321-329.

[2]

Harder J. Development of Klinker Substitutes in the Cement Industry[J]. ZKG International, 2006, 59(1): 58-64.

[3]

Shi C., Qian J. High Performance Cementing Materials from Industrial Slag—A Review[J]. Resources Conservation & Recycling, 2000, 29(3): 195-207.

[4]

Swanepoel J. C., Strydom C. A. Utilisation of Fly Ash in a Geopolymeric Material[J]. Applied Geochemistry, 2002, 17(8): 1143-1148.

[5]

Malhotra S. K., Dave N. G. Investigations into the Effect of Addition of Fly Ash and Burnt Clay Pozzolana on Certain Properties of Cement Composites[J]. Cem. Conr. Compos., 1999, 21(4): 285-291.

[6]

Feldman R. F., Carette G. G., . Studies on Development of Physical and Mechanical Properties of High-volume Fly Ash Cement Pastes[J]. Cem. Conr. Compos., 1999, 21(3): 245-251.

[7]

Li S., Roy D. M., . Quantitative Determination of Pozzolanas in Hydrated System of Cement or Ca(OH)2 with Fly Ash or Silica Fume[J]. Cem. Concr. Res., 1985, 15(6): 1079-1086.

[8]

Taylor H F W. Cement Chemistry(2nd Edition) [M]. London: Thomas Telford Ltd, 272

[9]

Li H., Shang B. M., Feng S. H. The Study on the Physical and Chemical Properties and the Microstructure of Fly Ash[J]. Fly Ash, 2006, 18(5): 18-23.

[10]

Li H., Shang B. M., Xu D. L. Microstructure and Chemical Composition of Ferrous Micro-bead Separated from Fly Ash[J]. Mining Research and Development, 2006, 26(6): 65-68.

[11]

Kutchko B. G., Kim A. G. Fly Ash Characterization by SEM-EDS[J]. Fuel, 2006, 85(17–18): 2537-2544.

[12]

ACI Committee 226. Use of Fly Ash in Concrete[J]. ACI Mater. J., 1988, 85: 381-408.

[13]

ACI Committee 211. Guide for Selecting Proportions for High-strength Concrete with Portland Cement and Fly Ash[J]. ACI Mater. J., 1993, 90: 272-283.

[14]

Langley W. S., Carette G. G., Malhotra V. M. Structural Concrete in Corporating High Volumes of ASTM Class F Fly Ash[J]. ACI Mater. J., 1989, 86: 507-514.

[15]

Carette G., Bilodeau A., Chevrier R. L., . Mechanical Properties of Concrete Incorporating High Volumes of Fly Ash from Sources in the U S [J]. ACI Mater. J., 1993, 90: 535-544.

[16]

Bilodeau A., Malhotra V. M. High-volume Fly Ash System: Concrete Solution for Sustainable Development[J]. ACI Mater. J., 2000, 97: 41-48.

[17]

Poon C. S., Lam L., . A Study on High Strength Concrete Prepared with Large Volumes of Low Calcium Fly Ash[J]. Cem. Concr. Res., 2000, 20(3): 447-455.

[18]

Antiohos S., Tsimas S. Investigation the Role of Reactive Silica in the Hydration Mechanisms of High-calcium Fly Ash/Cement Systems[J]. Cem. Conr. Compos., 2005, 27(2): 171-181.

[19]

Fu Y., Ding J., Beadoin J. Expansion of Portland Cement Mortar due to Internal Sulfate Attack[J]. Cem. Concr. Res., 1997, 27(1): 299-306.

[20]

Yuan S. L. Chinese Coal Series Kaolinite, Processing and Utilization[M], 2001 Beijing China Building Material Industry Press 16

[21]

Yang Q. Y., Li J. Study on Production Technology of Ultra-fine Calcined Kaolin from Coal Serial Kaolin[J]. Conservation and Utilization of Mineral Resources, 1999, 27: 22-24.

[22]

Kakali G., Perraki T., . Thermal Treatment of Kaolin: The Effect of Mineralogy on the Pozzolanic Activity[J]. Applied Clay Science, 2001, 20(1–2): 73-80.

[23]

Chen C. Y., Lan G. S., Tuan W. H. Microstructural Evolution of Mullite during the Sintering of Kaolin Powder Compacts[J]. Ceremics International, 2000, 26: 715-720.

[24]

Yuan R. Z. Gelling Material Science[M], 1989 Wuhan Wuhan Polytechnical University Press 65

[25]

Ren D. W. Study on the Production Technology of Calcined Kaolin with High Whiteness from Coal Serial Kaolinite[J]. Nonmetal Minerals, 1997, 116: 50-53.

[26]

Gao F., Zhang J. Y., Zhang B. J. Calcination Process Kaolin for Non-ceramic Industry[J]. Nonmetal Minerals, 1997, 115: 20-24.

[27]

Gao F., Zhao Z. L., Zhang J. Y., Zhang B. J. Comparison of Processes of Producing Super Fine Calcined Kaolin by Utilizing Coal Series Kaolinite[J]. Coal Conversion, 1999, 22: 27-29.

[28]

Xu D L, Li H. Preparing Kaolin from Coal Waste by Suspension Calcining Process[C]. In: Proceedings of 4th International Conference on Geopolymer(Saint-Quentin), 2005: 89–92

[29]

Davidovits J. From Ancient Concrete to Geopolymers[J]. Arts et Matiers Mag., 1993, 180: 8-16.

[30]

Davidovits J. Chemistry of Geopolymeric Systems, Terminology[ C]. In: Proceedings of 2nd International Conference on Geopolymer(Saint-Quentin),1999: 9–39

[31]

Xu H., van Deventer J. S. J. The Geopolymerisation of Aluminosilicate Minerals[J]. International Journal of Mineral Processing, 2000, 59(3): 247-266.

[32]

Palomo A., Grutzeck M. W., Blanco M. T. Alkali-activated Fly Ash, A Cement for the Future[J]. Cement and Concrete Research, 1999, 29(8): 1323-1329.

[33]

van Jaarsveld J. G. S., van Deventer J. S. J., Lukey G. C. The Effect of Composition and Temperature on the Properties of Fly Ash and Kaolinite-based Geopolymers[J]. Chemical Engineering Journal, 2002, 89(1–3): 63-73.

[34]

Xu H., van Deventer J. S. J. Geopolymerisation of Multiple Minerals[J]. Minerals Engineering, 2002, 15(12): 1131-1139.

[35]

Yang N R. A New Type of Cementitious Materials[J]. China Cement, 2005(10): 18–20 (in Chinese)

[36]

Palomo A, Macias A et al. Physical, Chemical and Mechanical Characterization of Geopolymers[C]. In: Proc. 9th Intern. Cong.on the Chem. of Cem., 1992: 505–511

[37]

van Aarsveld J. G. S., van Deventer J. S. J., Lorenzen L. The Potential Use of Geopolymeric Materials to Immobilise Toxic Metals: Part I. Theory and Applications[J]. Minerals Engineering, 1997, 10(7): 659-669.

[38]

Purdon A. O. The Action of Alkali on Blast-furnace Slag[J]. J. Soc. Chem. Ind., 1940, 59: 191-202.

[39]

Purdon A O. Discussion on Paper of Alkali-slag Cement[C]. In: Proc. 3nd Intern. Symp. of the Chem. of Cement (London) 1952: 576-577

[40]

Davidovits J. Ancient and Modern Concrete: What is the Real Difference [J]. Concrete International, 1967, 9: 23-35.

[41]

Davidovits J. Geopolymer: Inorganic Polymeric New Materials[J]. J. of Thermal Analysis, 1991, 37: 1633

[42]

Alonso S., Palomo A. Alkaline Activation of Meta-kaolin and Calcium Hydroxidemixture: Influence of Temperature of Activator Concentration and Solid Ratio[J]. Material Letters, 2001, 47(1–2): 55-62.

[43]

Xu H., Deventer J. S. J. The Geopolymerisation of Alumino-silicate Minerals[J]. Int. J. Miner. Process, 2000, 59: 247-266.

AI Summary AI Mindmap
PDF

201

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/