Physiochemical and biological properties of modified collagen sponge from porcine skin

Yuanyuan Xu , Jimin Wu , Jing Guan , Xizheng Zhang , Zhihong Li , Pengfei Wang , Ruixin Li , Yong Guo , Bo Ning , Shujie Huang

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (4) : 619 -626.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (4) : 619 -626. DOI: 10.1007/s11595-009-4619-2
Article

Physiochemical and biological properties of modified collagen sponge from porcine skin

Author information +
History +
PDF

Abstract

The aim of the present study was to compare one-step method to EDC/NHS crosslinking (EDC/NHS group) and one-step simultaneous method to EDC/NHS crosslinking and heparin immobilization (EDC/NHS- Heparin group) in improving physiochemical and biological properties of native collagen sponge (Control group). Modified collagen sponge overcome the disadvantages of native collagen sponge. IR spectra suggest the change of the functional groups. DSC data indicate that the stability of caloric transformation in EDC/NHS group is slightly higher than that of EDC/NHS-Heparin group. The crosslinking degree, stability against enzymes, stability in morphologically and biomechanical properties of EDC/NHS-Heparin group are higher than those of EDC/NHS group, whereas, the water-binding capacity in EDC/NHS-Heparin group is lower than that of EDC/NHS group. HUVECs in EDC/NHS-Heparin group scaffold proliferate fast, migrate well and distribute uniformly. One-step simultaneous method gains the better effects in above aspects, heparinized collagen matrices increase in angiogenic potential and suit for defect repairing and tissue engineering.

Keywords

collagen sponge / heparin / one-step method to EDC/NHS crosslinking / one-step simultaneous method to EDC/NHS crosslinking and heparin immobilization

Cite this article

Download citation ▾
Yuanyuan Xu, Jimin Wu, Jing Guan, Xizheng Zhang, Zhihong Li, Pengfei Wang, Ruixin Li, Yong Guo, Bo Ning, Shujie Huang. Physiochemical and biological properties of modified collagen sponge from porcine skin. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(4): 619-626 DOI:10.1007/s11595-009-4619-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pieper J.S., Hafmans T., van Wachem P.B., . Loading of Collagen-heparan Sulfate Matrices with bFGF Promotes Angiogenesis and Tissue Generation in Rats[J]. Biomed. Mater. Res., 2002, 62: 185-194.

[2]

Patel Z.S., Mikos A.G. Angiogenesis with Biomaterial-based Drug and Cell-delivery Systems[J]. Biomater Sci. Polym. Ed., 2004, 15: 701-726.

[3]

Hughes G.C., Biswas S.S., Yin B., . Therapeutic Angiogenesis in Chronically Ischemic Porcine Myocardium: Comparative Effects of bFGF and VEGF[J]. Ann. Thorac. Surg., 2004, 77: 812-818.

[4]

Michael J., Salibar J. Heparin in the Treatment of Burns[J]. Burns, 2001, 27: 349-358.

[5]

Fukuda S., Yoshii S., Kaga S., . Angiogenic Strategy for Human Ischemic Heart Disease: Brief Overview[J]. Mol. Cell Biochem., 2004, 264: 143-149.

[6]

Bennett S.P., Griffiths G.D., Schor A.M., . Growth Factors in the Treatment of Diabetic Foot Ulcers[J]. Br. J. Surg., 2003, 90: 133-146.

[7]

Ruszczak Z., Friessc W. Collagen as a Carrier for on-site Delivery of Antibacterial Drugs[J]. Advanced Drug Delivery Reviews, 2003, 55: 1679-1698.

[8]

Fujioka K., Maeda M., Hojo T., . Protein Release from Collagen Matrices[J]. Advanced Drug Delivery Reviews, 1998, 31: 247-266.

[9]

Kanematsu A., Marui A., Yamamoto S., . Type I Collagen can Function as a Reservoir of Basic Fibroblast Growth Factor[J]. Journal of Controlled Release, 2004, 99: 281-292.

[10]

Di Lullo G.A., Sweeney S.M., Korkko J., . Mapping the Ligand-binding Sites and Disease-associated Mutations on the most Abundant Protein in the Human Type I Collagen[J]. Biol. Chem., 2002, 277: 4223-4231.

[11]

Ueda H., Hong L., Yamamoto M., . Use of Collagen Sponge Incorporating Transforming Growth Factor-β1 to Promote Bone Repair in Skull Defects in Rabbits[J]. Biomaterials, 2002, 23: 1003-1010.

[12]

Lu Q., Zhang S., Hua K., . Cytocompatibility and Blood Compatibility of Multifunctional Fibroin/Collagen/Heparin Scaffolds[J]. Biomaterials, 2007, 28: 2306-2313.

[13]

Wissink M.J.B., Beernink R., Poot A.A., . Improved Endothelialization of Vascular Grafts by Local Release of Growth Factor from Heparinized Collagen Matrices[J]. Journal of Controlled Release, 2000, 64: 103-114.

[14]

Nakamura M., Watanabe J., Ogawa R., . Immunohi- stochemical Localization of Type II and Type I Collagens in Articular Cartilage of the Femoral Head of Dexamethasone-treated Rats[J]. Histochemical Journal, 1997, 29: 645-654.

[15]

Grabarek Z., Gergely J. Zero-length Crosslinking Procedure with the Use of Active Esters[ABC] [J]. Biophys. J., 1988, 53: 392

[16]

Angelea P., Abke J., Kujata R., . Influence of Different Collagen Dpecies on Physico-chemical Properties of Crosslinked Collagen Matrices[J]. Biomaterials, 2004, 25: 2831-2841.

[17]

Yue T.-W., Chien W.-C., Tseng S.-J., . EDC/NHS-mediated Heparinization of Small Intestinal Submucosa for Recombinant Adeno-associated virus Serotype 2 Binding and Transduction[J]. Biomaterials, 2007, 28: 2350-2357.

[18]

Kim M. S., Hong K. D., Shin H. W., . Preparation of Porcine Small Intestinal Submucosa Sponge and Their Application as a Wound Dressing in Full-thickness Skin Defect of Rat[J]. International Journal of Biological Macromolecules, 2005, 36: 54-60.

[19]

Wissink M.J.B., Beernink R., Pieper J.S., . Immobilization of Heparin to EDC/NHS-crosslinked Collagen. Characterization and in vitro Evaluation[J]. Biomaterials, 2001, 22: 151-163.

[20]

Yao C., Roderfeld M., Rath T., . The Impact of Proteinase-induced Matrix Degradation on the Release of VEGF from Heparinized Collagen Matrices[J]. Biomaterials, 2006, 27: 1608-1616.

[21]

Pieper J.S., Hafmans T., Veerkamp J.H., . Development of Tailor-made Collagen-glycosam Inoglycan Matrices: EDC/NHS Crosslinking, and Ultrastructural Aspects[J]. Biomaterials, 2000, 21: 581-593.

[22]

Stamov D., Grimmer M., Salchert K., . Heparin Intercalation into Reconstituted Collagen I Fibrils: Impact on Growth Kinetics and Morphology[J]. Biomaterials, 2008, 29: 1-14.

[23]

SM Sweeney, A Verrecchio, C Fields, et al. Type I Collagen-heparin Interactions in Angiogenesis[C]. The Seventeenth Annual Meeting of the East Coast Connective Tissue Society: 131

[24]

Wissink M.J.B., Beernink R., Pieper J.S., . Binding and Release of Basic Fibroblast Growth Factor from Heparinized Collagen Matrices[J]. Biomaterials, 2001, 22: 2291-2299.

[25]

Angelea P., Abke J., Kujata R., . Influence of Different Collagen Species on Physico-chemical Properties of Crosslinked Collagen Matrices[J]. Biomaterials, 2004, 25: 2831-2841.

[26]

Nam K., Kimura T., Kishida A. Physical and Biological Properties of Collagen-phospholipid Polymer Hybrid Gels[J]. Biomaterials, 2007, 28: 3153-3162.

[27]

Bubnis W.A., Ofner C.M. The Determination of Epsilon-amino Groups in Soluble and Poorly Soluble Proteinaceous Materials by Aspectrophotometric Method Using Trinitrobenzenesulfonic Acid[J]. Anal. Biochem., 1992, 207: 129-33.

[28]

Buttafocoa L., Kolkmana N.G., Engbers-Buijtenhuijsa P., . Electrospinning of Collagen and Elastin for Tissue Engineering Applications[J]. Biomaterials, 2006, 27: 724-734.

[29]

Wu J. M., Guan J., Zhang X. zheng. Structural Analysis and Physicochemical Properties of the Collagen Sponge[J]. Chinese J. Biomed. Eng. Vol., 2003, 12: 126-132.

[30]

Chen C.S., Yannas I.V., Spector M. Pore Strain Behaviour of Collagen Glycosaminoglycan Analogues of Extracellular Matrix[J]. Biomaterials, 1995, 16: 777-783.

[31]

Ma Z., Gao C., Gong Y., . Cartilage Tissue Engineering PLLA scaffold Withsurface Immobilized Collagen and Basic Fibroblast Growth Factor[J]. Biomaterials, 2005, 26: 1253-1259.

[32]

Wissink M.J.B., Beernink R., Scharenborg N.M., . Endothelial Cell Seeding of (heparinized) Collagen Matrices: Effects of bFGF Pre-loading on Proliferation (after Low Density Seeding) and Pro-coagulant Factors[J]. Journal of Controlled Release, 2000, 67: 141-155.

[33]

Yan M., Li B., Zhao X., . Characterization of Acid-soluble Collagen from the Skin of Walleye Pollock (Theragra chalcogramma) [J]. Food Chemistry, 2008, 107: 1581-1586.

[34]

Wang X.H., Lia D.P., Wang W.J., . Crosslinked Collagen/Chitosan Matrix for Artificial Livers[J]. Biomaterials, 2003, 24: 3213-3220.

[35]

Bouafsoun A., Ponsonnet L., Kerkeni A., . Comparative Wettability Study of Polystyrene Functionalized with Different Proteins[J]. Materials Science and Engineering C, 2007, 27: 709-715.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/