Electronic structure of SiC (310) twin boundary doped with B, N, Al and Ti

Yajing Ye , Litong Zhang , Kehe Su , Laifei Cheng , Yongdong Xu

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (4) : 599 -602.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (4) : 599 -602. DOI: 10.1007/s11595-009-4599-2
Article

Electronic structure of SiC (310) twin boundary doped with B, N, Al and Ti

Author information +
History +
PDF

Abstract

Doping of boron, nitrogen, aluminum and titanium in the SiC (310) twin boundary was investigated, and the first-principle calculation was used to analyze the underlying mechanism of excellent creep resistance and strength of Sylramic and Tyranno SA SiC fibers. The electronic structures were also analyzed and compared. The results of Mulliken overlap populations, electron density differences and density of states reveal that doping of B or N atom reinforces SiC GBs bonding, however, doping of Al or Ti atom weakens SiC GBs bonding. The reinforced SiC GBs will largely prevent atoms from sliding near GBs. The experimental results would be one of the reasons which lead to the reinforcement of either creep resistance or the strength of SiC fibers.

Keywords

ceramic / grain boundaries / electronic structure / density functional theory

Cite this article

Download citation ▾
Yajing Ye, Litong Zhang, Kehe Su, Laifei Cheng, Yongdong Xu. Electronic structure of SiC (310) twin boundary doped with B, N, Al and Ti. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(4): 599-602 DOI:10.1007/s11595-009-4599-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jones R. E., Petrak D., Rabe J., . SYLAMICTM SIC Fibers for CMC Reinforcement[J]. J. Nucl. Mater., 2000, 283–287: 556-559.

[2]

Goldspy J. C., Yun H. M., DiCarlo J. A. Creep and Rupture of an Advanced CVD SiC Fiber[J]. Scripta. Mater., 1997, 37: 299-303.

[3]

Teketa M., Urano A., Sakamoto J., . Microstructure and Oxidative Degradation Behavior of Silicon Carbide Fiber Hi-Nicalon Type S[J]. J. Nucl. Mater., 1998, 258–263: 1594-1599.

[4]

Ishikawa T., Kohtoku Y., Kumagawa K., . High-strength Alkali-resistant Sintered SiC Fibre Stable to 2200 °C[J]. Nature, 1998, 391: 773-775.

[5]

Dong S. M., Chollon G., Labrugère C., . Characterization of Nearly Stoichiometric SiC Ceramic Fibres[J]. J. Mater. Sci., 2001, 36: 2371-2381.

[6]

DiCarlo J. A. Creep Limitations of Current Polycrystalline Ceramic Fibers[J]. Comp. Sci. and Tech., 1994, 51(2): 213-222.

[7]

Sha J. J., Nozawa T., Park J. S., . Effect of Heat Treatment on the Tensile Strength and Creep Resistance of Advanced SiC fibers[J]. J. Nucl. Mater., 2004, 329–333: 592-596.

[8]

Segall M. D., Lindan P. J. D., Probert M. J., . First-principles Simulation: Ideas, Illustrations and the CASTEP Code[J]. J. Phys.: Condens. Matter, 2002, 14: 2717-2744.

[9]

Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77: 3865-3868.

[10]

Perdew J. P., Wang Y. Pair-distribution Function and Its Coupling-constant Average for the Spin-polarized Electron Gas[J]. Phys. Rev. B., 1992, 46: 12947-12954.

[11]

Pfrommer B. G., Cote M., Louie S. G., . Relaxation of Crystals with the Quasi-Newton Method[J]. J. Comput. Phys., 1997, 131: 233-240.

[12]

Monkhorst H. J., Pack J. D. Special Points for Brillouin-zone Integrations[J]. Phys. Rev. B, 1976, 13: 5188-5192.

[13]

Segall M. D., Shah R., Pickard C. J., . Population Analysis of Plane-wave Electronic Structure Calculations of Bulk Materials[J]. Phys. Rev. B, 1996, 54: 16317-16320.

[14]

Lide D. R. CRC Handbook of Chemistry and Physics[M], 1996 77 New York CRC Press Inc. 9-74.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/