Evaluation of PLGA/chitosan/HA conduits for nerve tissue reconstruction

Xiongjun Shen , Jianming Ruan , Zhongchi Zhou , Zhicheng Zeng , Lesi Xie

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (4) : 566 -570.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (4) : 566 -570. DOI: 10.1007/s11595-009-4566-y
Article

Evaluation of PLGA/chitosan/HA conduits for nerve tissue reconstruction

Author information +
History +
PDF

Abstract

A micro-envioment for nerve cells and tissue growth were designed and constructed via surface modification of poly(L-lactide-co-glycolide)(PLGA) with chitosan and hydroxyapatite(HA). The poly(L-lactide-co-glycolide)/chitosan/hydroxyapatite (PLGA/chitosan/HA) conduits were manufactured by a combined solvent casting and particulate leaching technique. The conduits were highly porous with an interconnected pore structure and 76.5% porosity. Micropores with 50–100 micrometer diameter were formed in the conduits. In vivo application of PLGA/chitosan/HA conduits for reconstruction of 10 mm sciatic nerve defect was assessed by the walking track analysis, the quantifying of the wet weight of tibialis anterior muscle and the histological assessment. The conduits in host rats in vivo can not only be an effective in promoting regenerating of nerves but can also lead to favorable nerve functional recovery.

Keywords

poly(L-lactide-co-glycolide)/chitosan/hydroxyapatite(PLGA/chitosan/HA) / conduit / biocompatibility / nerve regeneration / tissue engineering

Cite this article

Download citation ▾
Xiongjun Shen, Jianming Ruan, Zhongchi Zhou, Zhicheng Zeng, Lesi Xie. Evaluation of PLGA/chitosan/HA conduits for nerve tissue reconstruction. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(4): 566-570 DOI:10.1007/s11595-009-4566-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bellamkonda R. V., Ranieri J. P., Bouche N., . Hydrogelbased Three-dimensional Matrix for Neural Cells[J]. J. Biomed. Mater. Res., 1995, 29: 663-671.

[2]

Evans G. R., Brandt K., Widmer M. S., . In vivo Evaluation of Poly(L-lactic acid) Porous Conduits for Peripheral Nerve Regeneration[J]. Biomaterials, 1999, 20: 1109-1115.

[3]

Balgude A. P., Yu X., Szymanski A., . Agarose Gel Stiffness Determines Rate of DRG Neurite Extension in 3D Cultures[ J]. Biomaterials, 2001, 22: 1077-1084.

[4]

Evans G. R., Keith B., Katz S., . Bioactive Poly(l-lactic acid) Conduits Seeded with Schwann Cells for Peripheral Nerve Regeneration[J]. Biomaterials, 2002, 23: 841-848.

[5]

Gerburg K., Felix S., Gerald W., . Bio-compatibility of Type I/III Collagen Matrix for Peripheral Nerve Reconstruction[J]. Biomaterials, 2003, 24: 2779-2787.

[6]

Freier T., Montenegro R., Koh H. S., . Shoichet. Chitin-based Tubes for Tissue Engineering in the Nervous System[J]. Biomaterials, 2005, 26: 4624-4632.

[7]

Moore M. J., Friedman J. A., Lewellyn E. B., . Multiple-channel Scaffolds to Promote Spinal Cord Axon Regeneration[J]. Biomaterials, 2006, 27: 419-429.

[8]

Prang P., Müller R., Eljaouhari A., . The Promotion of Oriented Axonal Regrowth in the Injured Spinal Cord by Alginate-based Anisotropic Capillary Hydrogels[J]. Biomaterials, 2006, 27: 3560-3569.

[9]

Suematsu N. Tubulation for Peripheral Nerve Gap: Its History and Possibility[J]. Microsurgery, 1989, 10: 71-74.

[10]

Jenq C., Coggeshall E. Nerve Regeneration Through Holey Silicone Tubes[J]. Brain Res., 1985, 361: 233-241.

[11]

Aebischer P., Guénard V., Valentini R.F. The Morphology of Regenerating Peripheral Nerves is Modulated by the Surface Microgeometry of Polymeric Guidance Channels[J]. Brain Res., 1990, 531: 211-218.

[12]

Hoppen H.J., Leenslag J.W., Pennings A.J., van der Lei B., Robinson P.H. Two-ply Biodegradable Nerve Guide: Basic Aspects of Design, Construction and Biological Performance[J]. Biomaterials, 1990, 11: 286-290.

[13]

Dunnen W.F.A., Schakenraad J.M., Zondervan G.J., Pennings A.J., van der Lei B., Robinson P.H. A New PLLA/PCL Copolymer for Nerve Regeneration[J]. J. Mater. Sci. Mater. Med., 1993, 4: 521-525.

[14]

Widmer M.S., Gupta P.K., Lu L., Meszlenyi R.K., Evans G.R.D., Brandt K., Savel T., GuKrlek A., Patrick C.W., Mikos A.G. Manufacture of Porous Biodegradable Polymer Conduits by an Extrusion Process for Guided Tissue Regeneration[J]. Biomaterials, 1998, 19: 1945-1955.

[15]

Zhang H., Ruan J., Zhou Z., . Preparation of Monomer of Degradable Biomaterial Poly(L-lactid)[J]. J. Cent. South Univ. Technol., 2005, 12(3): 246-250.

[16]

Gilding D.K., Reed A.M. Biodegradable Polymers for Use in Surgery—Polyglycolic/Polylactic Acid Homo- and Copolymers[ J]. Polymer, 1979, 20: 1459-1464.

[17]

Shi G.X., Wang S.G., Bei J.Z. Preparation of Porous Cell Scaffolds of Poly(L-lactic acid) and Poly(L-lactic-co-glycolic acid) and the Measurement of Their Porosities[J]. J. Funct. Polymer, 2001, 14: 7-11.

[18]

Mackinnon S.E., Dellon A.L. Clinical Nerve Reconstruction with a Bioabsorbable Polyglycolic Acid Tube[J]. Plast. Reconstr. Surg., 1990, 85: 419-424.

[19]

Hare G.M.T., Evans P.J., MacKinnon S.E., Best T.J., . Walking Track Analysis: a Long-term Assessment of Peripheral Nerve Recovery[J]. Plast. Reconstr. Surg., 1992, 89: 251-258.

[20]

Sundback C.A., Shyu J.Y., Wang Y.D., Faquin W.C., . Biocompatibility Analysis of Poly(glycerol sebacate) as a Nerve guide Material[J]. Biomaterials, 2005, 26: 5454-5464.

[21]

Jennrich R.I., Schluchter M.D. Unbalanced Repeated Measurements Models with Structured Covariance Matrices[J]. Biometrics, 1986, 42: 805-820.

[22]

Bini T.B., Gao S., Xu X., Wang S., . Peripheral Nerve Regeneration by Microbraided Poly(L-lactide-coglycolide) Biodegradable Polymer Fibers[J]. J. Biomed. Mater. Res., 2004, 68: 286-295.

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/