Disruption of bacterial cells by photocatalysis of montmorillonite supported titanium dioxide

Shaomin Lei , Gaoli Guo , Bihua Xiong , Wenqi Gong , Guangjun Mei

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (4) : 557 -561.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (4) : 557 -561. DOI: 10.1007/s11595-009-4557-z
Article

Disruption of bacterial cells by photocatalysis of montmorillonite supported titanium dioxide

Author information +
History +
PDF

Abstract

The photo-induced antibacterial capacity of montmorillonite supported titanium dioxide (TiO2/Mmt for short) was evaluated by using Escherichia coli and Staphylococcus aureus as modal organisms. The bactericidal activity of TiO2/Mmt was examined by cell viability assay under different illumination modes. Atomic force microscopy (AFM) and total organic carbon/Total nitrogen (TOC/TN) analyses were employed to investigate the mechanism of the photocatalytic bactericidal process qualitatively and quantitatively. The kinetic data show that TiO2/Mmt has excellent antibacterial performance, and about 99% of both bacteria cells are inactivated within 75 min illumination. The AFM images demonstrate that the bacterial cells are irreversibly decomposed and some cell components are dissolved. Therefore, the content and phase of carbon and nitrogen in the solution are changed after photocatalytic reaction.

Cite this article

Download citation ▾
Shaomin Lei, Gaoli Guo, Bihua Xiong, Wenqi Gong, Guangjun Mei. Disruption of bacterial cells by photocatalysis of montmorillonite supported titanium dioxide. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(4): 557-561 DOI:10.1007/s11595-009-4557-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MatsunagaT., TomodaR., NakajimaT., et al.. Photoelectrochemical Sterilization of Microbial Cells by Semiconductor Powders[J]. FEMS Microbiol Lett., 1985, 29(1–2): 211-214

[2]

LeeS., NishidaK., OtakiM., et al.. Photocatalytic Inactivation of Phage Q β by Immobilized Titanium Dioxide Mediated Photocatalyst[J]. Water Sci. Technol., 1997, 35(11–12): 101-106

[3]

YoshiyukiK., MasahitoT.. Kinetic Evaluation of Biocidal Activity of Titanium Dioxide against Phage MS2 Considering Interaction between the Phage and Photocatalyst Particles[J]. Biochem. Eng. J., 2002, 12(2): 107-116

[4]

HuangN. P., XuM. H., YuanC. W., et al.. The Study of the Photokilling Effect and Mechanism of Ultrafine TiO2 Particles on U937 Cells[J]. J. Photochem Photobiol A: Chem., 1997, 108: 229-233

[5]

LinkousC. A., CarterG. J., LocusonD. B., et al.. Photocatalytic Inhibition of Algae Growth Using TiO2, WO3, and Cocatalyst Modifications[J]. Environ. Sci. Technol., 2000, 34: 4754-4758

[6]

LonnenJ., KilvingtonS., KehoeS. C., et al.. Solar and Photocatalytic Disinfection of Protozoan, Fungal and Bacterial Microbes in Drinking Water[J]. Water Res., 2005, 39: 877-883s

[7]

SuC., HongB. Y., TsengC. M.. Sol-gel Preparation and Photocatalysis of Titanium Dioxide[J]. Catal. Today, 2004, 96: 119-126

[8]

HuangZ., ManessP. C., BlakeD. M., et al.. Bactericidal Mode of Titanium Dioxide Photocatalysis[J]. J. Photochem. Photobiol. A: Chem., 2000, 130(2–3): 163-170

[9]

KayanoS., ToshiyaW., HashimotoK.. Studies on Photokilling of Bacteria on TiO2 Thin Film[J]. J. Photochem. Photobiol. A: Chem., 2003, 156: 227-233

[10]

Amézaga-MadridP., Silveyra-MoralesR., Córdoba-FierroL., et al.. TEM Evidence of Ultrastructural Alteration on Pseudomonas aeruginosa by Photocatalytic TiO2[J]. J. Photochem. Photobiology B: Biol., 2003, 70: 45-50

[11]

LuZ. X., ZhouL., ZhangZ. L., et al.. Cell Damage Induced by Photocatalysis of TiO2 Thin Films[J]. Langmuir, 2003, 19(21): 8765-8768

[12]

ChihiroO., HisaoY., MasakazuH., et al.. Adsorptive and Photocatalytic Performance of TiO2 Pillared Montmorillonite in Degradation of Endocrine Disruptors Having Different Hydrophobicity[J]. Appl. Catal. B: Environ., 2003, 41: 313-321

[13]

BhattacharyyaA., KawiS., RayM. B.. Photocatalytic Degradation of Orange II by TiO2 Catalysts Supported on Adsorbents[J]. Catal Today, 2004, 98: 431-439

[14]

TzallB.The Inactivation of Microorganisms Using Photocatalysis[D], 2001, New York, Polytechnic University

[15]

SatioT., IwaseT., HorisJ., et al.. Mode of Photocatalytic Bactericideal Action Powdered Semiconductor TiO2 on Mutant Streptococci[J]. J. Photochem. Photobiol. B: Biol., 1992, 14: 369-379

[16]

MiltonS., StotzkyG.. Adsorption of Coliphages T1 and T7 to Clay Minerals[J]. Appl. Environ. Microbiol., 1982, 43(3): 590-596

[17]

YuehueiH. A., FriedmanR. J.. Concise Review of Mechanisms of Bacterial Adhesion to Biomaterial Surfaces[J]. J. Biomed. Mater. Res. Part B: Appl. Biomater., 1998, 43(3): 338-348

[18]

GumyD., MoraisC., BowenP., et al.. Catalytic Activity of Commercial of TiO2 Powders for the Abatement of the Bacteria (E. coli) under Solar Simulated Light: Influence of the Isoelectric Point[J]. Appl. Catal. B: Environ., 2006, 63: 76-84

[19]

YasuhikoH., MasahitoT., SetsujiT.. Effect of Cell Adsorption on Photosterilization of Escherichia coli over Titanium Dioxide-activated Charcoal Granules[J]. J. Chem. Eng. Jpn., 1998, 31(6): 922-929

[20]

RincónA. G., PulgarinC.. Bactericidal Action of Illuminated TiO2 on Pure Escherichia coli and Natural Bacterial Consortia: Post-irradiation Events in the Dark and Assessment of the Effective Disinfection Time[J]. Appl. Catal. B: Environ., 2004, 49: 99-112

[21]

ShenP.Microbiology [M], 2000, Beijing, High Education Press

[22]

KlausP. K., IrisF. C., KarlM., et al.. Disinfection of Surfaces by Photocatalytic Oxidation with Titanium Dioxide and UVA Light[J]. Chemosphere, 2003, 53: 71-77

[23]

ManessP. C., SmolinskiS., BlakeD. M., et al.. Bactericidal Activity of Photocatalytic TiO2 Reaction: Toward an Understanding of Its Killing Mechanism[J]. Appl. Environ. Microbiol., 1999, 65(9): 4094-4098

[24]

DufrêneY. F.. Atomic Force Microscopy, a Powerful Tool in Microbiology[J]. J. Bacteriol., 2002, 184(19): 5205-5213

[25]

KlečkaG. M., MaierW. J.. Kinetics of Microbial Growth on Pentachlorophenol[J]. Appl. Environ. Microbiol., 1985, 49(1): 46-53

[26]

HidakaH., HorikoshiS., AjisakaK., et al.. Fate of Amino Acids upon Exposure to Aqueous Titania Irradiated with UV-A and UV-B Radiation Photocatalyzed Formation of NH3, NO3, and CO2[J]. J. Photochem. Photobiol.A: Chem., 1997, 108: 197-205

[27]

HisaoH., SatoshiH., NickS., et al.. In vitro Photochemical Damage to DNA, RNA and Their Bases by an Inorganic Sunscreen Agent on Exposure to UVA and UVB Radiation[J]. J. Photochem. Photobiol. A: Chem., 1997, 111: 205-213

[28]

WilliamA. J., ManessP. C., WolfrumE. J., et al.. Mineralization of Bacterial Cell Mass on a Photocatalytic Surface in Air[J]. Environ. Sci. Technol., 1998, 32(17): 2650-2653

RIGHTS & PERMISSIONS

Wuhan University of Technology and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/