Microstrain in nanocrystalline copper by high resolution electron microscopy

Changping Min , Xuefeng Ruan , Huamin Zou

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (4) : 528 -532.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (4) : 528 -532. DOI: 10.1007/s11595-009-4528-4
Article

Microstrain in nanocrystalline copper by high resolution electron microscopy

Author information +
History +
PDF

Abstract

The elastic microstrains in a crystallite of electrodeposited nanocrystalline copper were investigated by analyzing the high resolution electron microscopy (HRTEM) image. The microstrain was considered as consisting of two parts, in which the uniform part was determined with fast Fourier transformation of the HRTEM image, while the non-uniform part of the microstrain in the crystallite was measured by means of peak finding. Atomic column spacing measurements show that the crystal lattice is contracted in the longitudinal direction, while expanded in the transverse direction of the elliptical crystallite, indicating that the variation of microstrain exists mainly near the grain boundary.

Keywords

nanocrystal / microstrain / HRTEM

Cite this article

Download citation ▾
Changping Min, Xuefeng Ruan, Huamin Zou. Microstrain in nanocrystalline copper by high resolution electron microscopy. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(4): 528-532 DOI:10.1007/s11595-009-4528-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gleiter H. Nanostructured Materials: Basic Comcepts and Microstructure[J]. Acta Mater., 2000, 48: 1-29.

[2]

Liu X. D., Zhang H. Y., Lu K., . The Lattice Expansion in Nanometre-sized Ni Polycrystals[J]. J. Phys.: Condens. Matter., 1994, 6: 497-502.

[3]

Banerjee R., Sperling E. A., Thompson G. B., . Lattic Expansion in Nanocrystalline Niobium Thin Films[J]. Appl. Phys. Lett., 2003, 82: 4250-4252.

[4]

Zhang K., Alexandrov I. V., Kilmametov A. R., . The Crystallite-size Dependence of Structural Parameters in Pure Ultrafine-grained Copper[J]. J. Phys. D, 1997, 30: 3008-3015.

[5]

Zhang K., Alexandrov I. V., Valiev R. Z., . Structural Characterization of Nanocrystalline Copper by Means of X-ray Diffraction[J]. J. Appl. Phys., 1996, 80: 5617-5624.

[6]

Liu M., Shi B., Guo J., . Lattice Constant Dependence of Elastic Modulus for Ultrafine Grained Mild Steel[J]. Scripta Mater., 2003, 49: 167-171.

[7]

Sarangi S. N., Sahu S. N. CdSe Nanocrystalline Thin Films: Compostion, Structure and Optical Propertis[J]. Physica E, 2004, 23: 159-167.

[8]

Zhao Y. H., Zhang K., Structure K. Lu. Characteristics of Nanocrystalline Elecment Selenium with Different Grain Sizes[J]. Phys. Rev. B, 1997, 56: 14322-14329.

[9]

Liang L. H., Li J. C., Jiang Q. Size-dependent Elastic Modulus of Cu and Au Thin Films[J]. Solid State Commun., 2002, 21: 453-455.

[10]

Lu L., Tao N. R., Wang L. B., . Grain Growht and Strain Release in Nanocrystalline Copper[J]. J. Appl. Phys., 2001, 89: 6408-6414.

[11]

Qian L. H., Wang S. C., Zhao Y. H., . Microstrain Effect on Thermal Properties of Nanocrystalline Cu[J]. Acta Mater., 2002, 50: 3425-3434.

[12]

Li B., Zou H., Pan J. A Study of Residual Strain in a K2O·6TiO2W/Al Composite by Using Convergent Beam Electron Diffraction [J]. Scripta Mater., 1998, 38: 1419-1425.

[13]

Kret S., Ruterana P., Rosenauer A., . Extracting Quantitative Information from High Resolution Electron Microscopy[ J]. Phys. Stat. Sol., 2001, 227: 247-295.

[14]

Romeo M., Arnault J. C., Ehret G., . Local Lattice Distortions in Spherical Carbon Nanoparticles as Studied by HRTEM Image Analysis[J]. Ultramicroscopy, 2002, 92: 209-213.

[15]

Tsena S.-C. Y., Croziera P. A., Liu J. Lattice Measurement and Alloy Compositions in Metal and Bimetallic Nanoparticles[J]. Ultramicroscopy, 2003, 98: 63-72.

[16]

Chen Q., Peng L. M. Measurement Accuracy of the Diameter of a Carbon Nanotube from TEM Images[J]. Phys. Rev. B, 2002, 65: 155431-155438.

[17]

Baviera P., Harel S., Garen H., . Elaboration and Structure of Nanostructured TiC: A XRD and HRTEM Study[J]. Scripta Mater., 2001, 44: 2721-2727.

[18]

Zhang L., Han Y., Lu J. Nanocrystallization of Zirconium Subjected to Surface Mechanical Attrition Treatment[J]. Nanotechnology, 2008, 19: 165706-165713.

[19]

Mura T. Micromechanics of Defects in Solids[M], 1987 Dordrecht Martinus Nijhoff Publishers 110-128.

[20]

Natte H., Hempelmann R. Nanocrystalline Copper by Pulsed Electrodeposition: The Effects of Organic Additives, Bath Temperature, and pH[J]. J. Phys. Chem., 1996, 100: 19525-19532.

[21]

Williams D. B., Carter C. B. Transimission Electron Microscopy: A Textbook for Materials Science[M], 1996 New York Plenum Press 470-475.

[22]

Lan J. Z., Wang S. Q., Xie T. S., . Quantitative Analysis and Application of HREM Image[J]. J. Chin. Electr. Microsc. Soc., 1998, 17(1): 72-77.

[23]

Qin W., Ngase T., Umakoshi Y., . Lattice Distortion and Its Effects on Physical Properties of Nanostructured Materials[ J]. J. Phys.: Condens. Matter, 2007, 19: 236217-236225.

[24]

Hirth J. P., Lothe J. Theory of Dislocations[M], 1982 2 New York Wiley

[25]

Dieter G. E. Mechanical Metallurgy[M], 1976 2 Tokyo McGraw-Hill Kogakusha

[26]

Shan Z. W., Wiezorek J. M. K., Knapp J. A., . Large Lattice Strain in Individual Grains of Deformed Nanocrystalline Ni[J]. Appl. Phys. Lett., 2008, 92: 091917-091920.

[27]

Shen Y. G., Lu Y. H., Liu Z. J. Microstructure Evolution and Grain Growth of Nanocomposite TiN-TiB2 Films: Experiment and Simulation[J]. Surface & Coatings Technology, 2006, 200: 6474-6478.

[28]

Clarke A. S., Wiley J. D. Numerical Simulation of the Dense Random Packing of a Binary Mixture of Hard Sphere: Amorphous Metals[J]. Phys. Rev. B, 1987, 35: 7350-7356.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/