The film-forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles

Lixin Cao , Xundao Yuan , Shiquan Xi

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (4) : 525 -527.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (4) : 525 -527. DOI: 10.1007/s11595-009-4525-7
Article

The film-forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles

Author information +
History +
PDF

Abstract

The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy and transmission electron microscopy. It is found that the freshly prepared hydrosol of Fe2O3 nanoparticles is not stable. The surface pressure increases with the aging time and finally approaches a constant, and the smaller the concentration is, the smaller the surface pressure is stabilized at and the shorter the time the hydrosol reaching stable needs. The surface pressure also increases with compression until collapsed, and the longer the hydrosol is aged, the higher the collapsing pressure is. A uniform and compact film composed of nanoparticles with an average diameter of about 2–3 nm on the air-hydrosol interface is observed by Brewster angle microscope and transmission electron microscope.

Keywords

film / interface / air and hydrosol / Fe2O3 nanoparticles

Cite this article

Download citation ▾
Lixin Cao, Xundao Yuan, Shiquan Xi. The film-forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(4): 525-527 DOI:10.1007/s11595-009-4525-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Poghossian A. S., Abovian H. V., Aroutiounian V. M. Selective Petrol Vapour Sensor Based on an Fe2O3 Thin Film[J]. Sensors and Actuators B: Chemical, 1994, 18(1–3): 155-157.

[2]

Peng J., Chai C. C. A Study of the Sensing Characteristics of Fe2O3 Gas-sensing Thin Film[J]. Sensors and Actuators B: Chemical, 1993, 14(1–3): 591-593.

[3]

Hara K., Nishida N. H2 Sensors Using Fe2O3-based Thin Film. Sensors and Actuators B: Chemical, 1994, 20(2–3): 181-186.

[4]

Gong Y. S., Wang C. N., Shen Q., . Preparation and Properties of IrO2 Thin Films Grown by Pulsed Laser Deposition Technique[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2007, 22(1): 77-81.

[5]

Li H., Cheng J. S., Zhang L. Preparation and Properties of dip-coated CeO2-TiO2 Thin Golden Glass Film[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2007, 22(3): 482-485.

[6]

Yang L. R., Jin Z. G., Wu W. B., . Nanostructured ZnO Films Electrodeposited on Hydrophilic Substrate Utilizing Cooperative Surface Assembly[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2006, 21(3): 72-75.

[7]

Parhizkar M., Singh S., Nayak P. K., . Nanocrystalline CuO Films Prepared by Pyrolysis of Cu-arachidate LB Multilayers[ J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 257–258: 277-282.

[8]

Parhizkar M., Kumar N., Nayak P. K., . Nanocrystalline ZnO Films Prepared by Pyrolysis of Zn-arachidate LB Multilayers[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 257–258: 445-449.

[9]

Seidl M., Schurr M., Brugger A., . Zinc Oxide Thin Films Prepared by Means of Langmuir-Blodgett Multilayers[J]. Appl. Phys. A, 1999, 68: 81-85.

[10]

Kang Y. S., Lee D. K., Lee C. S., . In Situ Observation of Domain Structure in Monolayers of Arachidic Acid/-Fe2O3 Nanoparticle Complexes at the Air/Water Interface [J]. Phys. Chem. B, 2002, 106: 9341-9346.

[11]

Lee D. K., Kang Y. S., Lee C. S., . Structure and Characterization of Nanocomposite Langmuir-Blodgett Films of Poly(maleic monoester)/Fe3O4 Nanoparticle Complexes[J]. Phys. Chem. B, 2002, 106: 7267-7271.

[12]

Kanga Y. S., Leea D. K., Kimb Y. S. A Study on Temperature Dependency and in situ Observation of Domain Structure in Langmuir Layers of Stearic Acid/γ-Fe2O3 Nanoparticle Complex at the Air/Water Interface[J]. Synthetic Metals, 2001, 117: 165-167.

[13]

Zhang J., Wang D. J., Chen Y. M., . A New Type of Organic-inorganic Multilayer: Fabrication and Photoelectric Properties[J]. Thin Solid Films, 1997, 300: 208-212.

[14]

Cao L. X., Huo L. H., Ping G. C., . Particulate Multilayers Prepared from Surfactant-stabilized SnO2 Nanoparticles[J]. Thin Solid Films, 1999, 347: 258-262.

[15]

Brandl D., Schoppmann C., Tomaschko C., . Preparation of Ultrathin Ferric Oxide Layers Using Langmuir-Blodgett Films[J]. Thin Solid Films, 1994, 249: 113-117.

[16]

Parhizkar M., Singh S., Nayak P. K., . Nanocrystalline CuO Films Prepared by Pyrolysis of Cu-arachidate LB Multilayers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257–258: 277-282.

[17]

Parhizkar M., Kumar N., Nayak P. K., . Nanocrystalline ZnO Films Prepared by Pyrolysis of Zn-arachidate LB Multilayers[ J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257–258: 445-449.

[18]

Yuan X. D., Cao L. X., Wan H. B., . Study on the Self-packing of SnO2 Nanoparticles at the Air-hydrosol Interface and Its Composite LB Films with Arachidic Acid[J]. Thin Solid Films, 1998, 327–329: 33-36.

[19]

Matijevié E., Scheiner P. Ferric Hydrous Oxide Sols: III. Preparation of Uniform Particles by Hydrolysis of Fe(III)-chloride, -nitrate, and -perchlorate Solutions[J]. Colllid Interface Sci., 1978, 63: 509-524.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/