Interfacial microstructure and properties of Ti(C, N)/Ni bonded by transient liquid-phase diffusion

Shiquan Zhou , Xiaogang Li , Weihao Xiong , Yunhong Zhou

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (3) : 432 -439.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (3) : 432 -439. DOI: 10.1007/s11595-009-3432-2
Article

Interfacial microstructure and properties of Ti(C, N)/Ni bonded by transient liquid-phase diffusion

Author information +
History +
PDF

Abstract

Effects of the main process parameters(temperature and time) on microstructure and properties of Ti(C, N)/Ni interface bonded by (Cu+Nb) interlayer in a vacuum diffusion bonding device were investigated. The interfacial microstructures consisted initially of Ni3Nb metallic compound and eutectic of Ni3Nb+CuNiSS, and finally transformed to (Ti, Nb) (C, N)+Ni3Nb near Ti (C, N) and NiCuSS+Ni3Nb near Ni when diffusion bonding temperature was 1 523–1 573 K. It was clear that Cu was a constituent in the transient liquid phase (TLP) into which Ni was dissolved by forming Cu-Ni transition liquid. Nb was dissolved in Cu-Ni transition liquid rapidly. Ti (C, N) conld be wetted by resultant Ni-Nb-Cu transient liquid phase which was followed by a little (Ti, Nb) (C, N) solid solution formed at interface. This increased the interface combining capability. Ultimately the interface shear strength was able to reach 140 MPa. The theoretle analysis and experimental results show that the growth of interfacial reaction layer Ni3Nb accords with parabola law, and the activation energy of diffusion reaction is 115.0±0.5 kJ/mol, while the diffusion reaction speed constant is 12.53 mm/s1/2.

Keywords

vacuum diffusion bonding / transient liquid phase (TLP) / diffusion bonding interlayer / activation energy

Cite this article

Download citation ▾
Shiquan Zhou, Xiaogang Li, Weihao Xiong, Yunhong Zhou. Interfacial microstructure and properties of Ti(C, N)/Ni bonded by transient liquid-phase diffusion. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(3): 432-439 DOI:10.1007/s11595-009-3432-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y ZHENG, W H XIONG. Microstructure and Properties of Micron and Submicron Ti(C, N) Based Cermets[J]. Materials Engineering, 2001, (5): 37–41

[2]

Ettmayer P., Lengauer W. The Story of Cermets[J]. Powder Met. Int., 1989, 21(3): 37-39.

[3]

X F LI, H F DING, D R XU. Study on Brazing of Ti(C, N) Based Cermets to 45 Steel[J]. Hot Work Technology, 2003, (2): 24–28

[4]

H J LIU, J C FENG. Research Status of Diffusion Bonding of Ceramics to Metals[J]. Welding & Joining, 2000 (9): 7–11

[5]

Wang L. B., Li A. X., Quan M. X., . Researches on Ni-Cr-P Amorphous Brazing Filler Metal by Rapid Solidification[J]. Chinese Journal of Materials Research, 1993, 4: 44-47.

[6]

Yang X. H., He S. Y., Cao X. M. Welding of Nickel-based Alloy C-276[J]. Welding & Joining, 2004, 7: 28-33.

[7]

Xiong W. H., Hu Z. H., Cui K. Transitional Layer of Phase Interfaces in Ti(C, N)-based Cermet[J]. Acta Metallurgica Sinica, 1996, 32(10): 1 075-1 077.

[8]

Wang Q. Z., Liu Y., Chen Z. L., . Microstructures and Mechanical Properties of TiC/NiCrMoAlTi Cermets[J]. Chinese Journal of Materials Research, 2005, 19(4): 354-358.

[9]

Xiong W. H., Hu Z. H., Cui K. Formation Mechanism of Microcrystal Interface Layer in Ti(C, N)-based Cermet[J]. Acta Metallurgica Sinica, 1997, 33(5): 473-475.

[10]

Xiong W. H., Hu Z. H., Cui K. Interface Behavior of Carbide in Ti(C, N)-based Cermet[J]. Materials Review, 1998, 12(2): 14-19.

[11]

Eustathopoulos N. Dynamics of Wetting in Reactive Metal/Ceramic Systems[J]. Acta Mater., 1998, 46(7): 2 319-2 324.

[12]

Zhou S. Q., Zhao H., Dong Q. The Investigation of Diffusion Welding Process and Interfacial Microstructure and Properties on Ti(C, N)/Ni[J]. Materials Science Forum, 2007, 539–543: 4 042-4 047.

[13]

Zhou S. Q., Xiong W. H. The Interfacial Microstructure and Properties for Ti(C, N)/Ni in Diffusion Welding Process[J]. Chinese Journal of Materials Research, 2007, 21(1): 87-91.

[14]

Joubert J. M., Sundmana B., Dupin N. Assessment of the Niobium-Nickel System[J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2004, 28: 299-303.

[15]

Li Y., Zou Z., Xiao H. A Study on Microstructure in the Brazing Interface of WC-TiC-CoHard Alloys[J]. International Journal of Refractory Metals & Hard Materials, 2002, 20: 169-173.

[16]

Upadhyaya G. S. Nature and Properties of Refractory Carbides[M], 1996 New York Nova Science Publishers, Inc. 365-367.

[17]

Zhou Y. Analytical Modeling of Isothermal Solidification during Transient Liquid Phase (TLP) Bonding[J]. J. Mater. Sci. Lett., 2001, 20: 841-844.

[18]

Crank J. The Mathematics of Diffusion[M], 1975 2 Oxford, UK Oxford University Press 37-40.

[19]

Kajihara M. Analysis of Kinetics of Reactive Diffusion in a Hypothetical Binary System[J]. Acta Materialia, 2004, 52: 1 193-1 200.

[20]

Jihua H. Diffusion in Metal and Alloys[M], 1996 Beijing Metallurgical Industry Publisher 65-67.

[21]

Qi F., Kang S. A Study on Microstructural Changes in Ti(CN)-NbC-Ni Cermets[J]. Materials Science and Engineering, 1998, A251: 276-279.

[22]

Kundu S., Chatterjee S. Interfacial Microstructure and Mechanical Properties of Diffusion-bonded Titanium-stainless Steel Joints Using a Nickel Interlayer[J]. Materials Science and Engineering, 2006, A425: 107-113.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/