Photocatalytic inhibition of cyanobacterial growth using silver-doped TiO2 under UV-C light

Xingsheng Liao , Xing Wang , Kaihong Zhao , Ming Zhou

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (3) : 402 -408.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (3) : 402 -408. DOI: 10.1007/s11595-009-3402-8
Article

Photocatalytic inhibition of cyanobacterial growth using silver-doped TiO2 under UV-C light

Author information +
History +
PDF

Abstract

Capacity of the silver-doped TiO2 under UV-C light to restrain cyanobacterial growth was explored with Anabaena sp. PCC 7120 and Microcystis aeruginosa as test species. The survival, chlorophyll bleaching, photosynthetic activity, DNA breakages, antioxidant enzyme activities, lipid peroxidation, and cellular morphologic structure of test cyanobacteria were analyzed. The results indicate that the test cyanobacteria with UV-C photocatalysis by silver-doped TiO2 sufferd from effects of reactive oxygen species, which promote the damage of the cell wall and the peroxidation of cell membranes, and subsequently, aggravate the losses of cell organelle and viability. The results suggest that UV-C photocatalysis by the silver ions doped TiO2 could be a promising method to prevent fast and excessive growth of cyanobacteria in eutrophic water sources.

Keywords

silver ions doped TiO2 / photocatalysis / UV-C irradiation / Anabaena sp. PCC 7120 / microcystis aeruginosa / lipid peroxidation

Cite this article

Download citation ▾
Xingsheng Liao, Xing Wang, Kaihong Zhao, Ming Zhou. Photocatalytic inhibition of cyanobacterial growth using silver-doped TiO2 under UV-C light. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(3): 402-408 DOI:10.1007/s11595-009-3402-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lugomela C., Pratap H. B., Mgaya Y. D. Cyanobacteria Blooms-a Possible Cause of Mass Mortality of Lesser Flamingos in Lake Manyara and Lake Big Momela, Tanzania[J]. Harmful Algae, 2006, 5: 534-541.

[2]

Hoeger S. J., Hitzfeld B. C., Dietrich D. R. Occurrence and Elimination of Cyanobacterial Toxins in Drinking Water Treatment Plants[J]. Toxicol. Appl. Pharm., 2005, 203: 231-242.

[3]

Choi J., Kim B. H., Kim J. D. Streptomyces Neyagawaensis as a Control for the Hazardous Biomass of Microcystis Aeruginosa (Cyanobacteria) in Eutrophic Freshwaters[J]. BioControl, 2005, 33: 335-343.

[4]

Gogniat G., Thyssen M., Denis M., . The Bactericidal Effect of TiO2 Photocatalysis Involves Adsorption onto Catalyst and the Loss of Membrane Integrity[J]. FEMS Microbiol. Lett., 2006, 258: 18-24.

[5]

Zhou M. H., Yu J. G., Cheng B. Effects of Fe-doping on the Photocatalytic Activity of Mesoporous TiO2 Powders Prepared by an Ultrasonic Method[J]. J. Hazard Mater. B, 2006, 137: 1 838-1 847.

[6]

Xin B. F., Jing L. Q., Ren Z. R., . Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO2[J]. J. Phys. Chem. B, 2005, 109: 2 805-2 809.

[7]

Atikiins P. W. Physical Chemistry[M], 1994 New York Oxford University Press 545

[8]

Jensen A. Chlorophyll a and Carotenoids[M], 1978 New York Cambridge University Press 59-70.

[9]

Bennett A, Bogorad L Complementary Chromatic Adaptation in a Filamentous Blue-green Alga[J]. J. Cell Biol., 1973, 58: 419-435.

[10]

He Y. Y., Häder D. P. UV-B Induced Formation of Reactive Oxygen Species and Oxidative Damage of the Cyanobacterium Anabanena sp.: Protective Effects of Ascorbic Acid and N-acetyl-L-cysteine[J]. J. Photochem. Photobio. B, 2002, 66: 115-124.

[11]

Marklund S., Marklund C. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay of Superoxide Dismutase[J]. Eur. J. Biochem., 1974, 47: 469

[12]

Cakmak I., Marschner H. Magnesium Deficiency and High Light Intensity Enhance Activities of Superoxide Dismutase, Ascorbate Peroxidase, and Glutathione Reductase in Bean Leaves[J]. Plant Physiol., 1992, 98: 1 222-1 227.

[13]

Bradford M. M. A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding[J]. Anal. Biochem., 1976, 72: 248-254.

[14]

Uchiyama M., Mihara M. Determination of Malonaldehyde Precursor in Tissues by Thiobarbituric Acid Test[J]. Anal. Biochem., 1978, 86: 271-278.

[15]

Asada K. The Water-water Cycle in Chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons[J]. Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 1999, 50: 601-639.

[16]

Douki T., Cadet J. Individual Determination of the Yield of the Main-UV Induced Dimeric Pyrimidine Photoproducts in DNA Suggests a High Mutagenicity of CC Photolesions[J]. Biochem., 2001, 40: 2 495-2 501.

[17]

Ledford H. K., Niyogi K. K. Singlet Oxygen and Photo-oxidative Stress Management in Plants and Algae[J]. Plant. Cell Environ., 2005, 28: 1 037-1 045.

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/