Synthesis and characterization of Mg3(PO4)2-coated Li1.05Ni1/3Mn1/3Co1/3O2 cathode material for Li-ion battery

Yuhong Chen , Zhiyuan Tang , Guoqing Zhang , Xuemei Zhang , Ruizhen Chen , Yuangang Liu , Qiang Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (3) : 347 -353.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (3) : 347 -353. DOI: 10.1007/s11595-009-3347-y
Article

Synthesis and characterization of Mg3(PO4)2-coated Li1.05Ni1/3Mn1/3Co1/3O2 cathode material for Li-ion battery

Author information +
History +
PDF

Abstract

Mg3(PO4)2-coated Li1.05Ni1/3Mn1/3Co1/3O2 cathode materials were synthesized via co-precipitation method. The morphology, structure, electrochemical performance and thermal stability were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS), charge/discharge cycling and differential scanning calorimeter (DSC). SEM analysis shows that Mg3(PO4)2-coating changes the morphologies of their particles and increases the grains size. XRD and CV results show that Mg3(PO4)2-coating powder is homogeneous and has better layered structure than the bare one. Mg3(PO4)2-coating improved high rate discharge capacity and cycle-life performance. The reason why the cycling performance of Mg3(PO4)2-coated sample at 55 °C was better than that of room temperature was the increasing of lithium-ion diffusion rate and charge transfer rate with temperature rising. Mg3(PO4)2-coating improved the cathode thermal stability, and the result was consistent with thermal abuse tests using Li-ion cells: the Mg3(PO4)2 coated Li1.05Ni1/3Mn1/3Co1/3O2 cathode did not exhibit thermal runaway with smoke and explosion, in contrast to the cells containing the bare Li1.05Ni1/3Mn1/3Co1/3O2.

Keywords

lithium-ion batteries / cathode materials / Li1.05Ni1/3Mn1/3Co1/3O2 / co-precipitation

Cite this article

Download citation ▾
Yuhong Chen, Zhiyuan Tang, Guoqing Zhang, Xuemei Zhang, Ruizhen Chen, Yuangang Liu, Qiang Liu. Synthesis and characterization of Mg3(PO4)2-coated Li1.05Ni1/3Mn1/3Co1/3O2 cathode material for Li-ion battery. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(3): 347-353 DOI:10.1007/s11595-009-3347-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yabuuchi N., Ohzuku T. Novel Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Advanced Lithium-ion Batteries[J]. J. Power Sources, 2003, 119–121: 171-174.

[2]

Lee K. K., Yoon W. S., Kim K. B., . Thermal Behavior and the Decomposition Mechanism of Electrochemically Delithiated Li1−xNiO2[J]. J. Power Sources, 2001, 7–98: 321-325.

[3]

Cho J., Park B. Preparation and Electrochemical/Thermal Properties of LiNi0.74Co0.26O2 Cathode Material[J]. J. Power Sources, 2001, 92: 35-39.

[4]

Yabuuchi N., Ohzuku T. Electrochemical Behaviors of LiCo1/3Ni1/3Mn1/3O2 in Lithium Batteries at Elevated Temperatures[J]. J. Power Sources, 2005, 146: 636-639.

[5]

Li J. G., Wan C. R., Yang D. P., . Fluorine Doping of Li3/8Co2/8Mn3/8O2 Cathode Material for Lithium-ion Batteries[J]. Chinese Journal of Inorganic Materials, 2004, 19(6): 1 298-1 306.

[6]

Cho T. H., Parka S. M., Yoshioa M., . Effect of Synthesis Condition on the Structural and Electrochemical Properties of Li[Ni1/3Mn1/3Co1/3]O2 Prepared by Carbonate Co-precipitation Method[J]. J. Power Sources, 2005, 142: 306-312.

[7]

Patoux S., Doeff M. M. Direct Synthesis of LiNi1/3Mn1/3Co1/3O2 from Nitrate Precursors[J]. Electrochemistry Communications, 2004, 6: 767-772.

[8]

Shaju K. M., Rao G. V. S., Chowdari B. V. R. Performance of Layered Li(Ni1/3Co1/3Mn1/3)O2 as Cathode for Li-ion Batteries[J]. Electrochimica Acta, 2002, 48: 145-151.

[9]

Cao H., Zhang Y., Zhang J. Synthesis and Electrochemical Characteristics of Layered LiNi0.6Co0.2Mn0.2O2 Cathode Material for Lithium Ion Batteries[J]. Solid State Ionics, 2005, 176: 1 207-1 211.

[10]

Paulsen J. M., Thomas C. L., Dahn J. R. O2 Structure Li2/3[Ni1/3Mn2/3]O2: a New Layered Cathode Material for Rechargeable Lithium Batteries. I. Electrochemical Properties[J]. J. Electrochem. Soc., 2000, 147(3): 86l-868.

[11]

Amatucci G. G., Tarascon J. M., Klein L. C., . Cobalt Dissolution in LiCoO2-based non-aqueous Rechargeable Batteries[J]. Solid State Ionics, 1996, 83: 167-173.

[12]

Cho J., Kim T. J., Kim J., . Synthesis, Thermal, and Electrochemical Properties of AlPO4-coated Ni0.8Co0.1Mn0.1O2 Cathode Materials for Li-ion Cell[J]. J. Electrochem. Soc., 2004, 151(11): A1899-A1904.

[13]

Lv D. S., Li W. S. Study on Electrochemical Impedance Spectroscopies of Insertion and Deinsertion of Lithium Ion in Spinel Lithium Manganese Oxide[J]. Chinese Acta Chimica Sinica, 2003, 61(2): 225-229.

[14]

Fey G. T. K., Chen J. G., Subramanian V., . Preparation and Electrochemical Properties of Zn-doped LiNi0.8Co0.2O2[J]. J. Power Sources, 2002, 112: 384-394.

[15]

Wu H. Q., Li Y. F. Electrochemical Kinetics[M], 1998 Beijing Higher Education Press 125

[16]

Zha Q. X. Introduction of Kinetics of Electrode Process[M], 2002 Beijing Science Press 84

[17]

Okada S., Sawa S., Egashira M., . Cathode Properties of Phospho-olivine LiMPO4 for Lithium Secondary Batteies[J]. J. Powers Sources, 2001, 97–98: 430-432.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/