Antibacterial properties of TiO2 ceramic pellets prepared using nano TiO2 powder

Yadong Yao , Yongdi Li , Wei Shao , Yunqing Kang , Hongjing Wang , Zhongbin Huang , Xiaoming Liao , Guangfu Yin

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (3) : 337 -342.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (3) : 337 -342. DOI: 10.1007/s11595-009-3337-0
Article

Antibacterial properties of TiO2 ceramic pellets prepared using nano TiO2 powder

Author information +
History +
PDF

Abstract

Titanium dioxide (TiO2) porous ceramic pellets with three dimension nano-structure were prepared using nano TiO2 powder. The TiO2 porous ceramic pellets were composed of TiO2 nanoparticles with 14–16 nm in diameter and had porosity of 74.85%. The mean pore size of the TiO2 porous ceramic pellets was 20.73 nm and the main pore size ranged from 3 to 16 nm. The mass loss of the TiO2 ceramic pellets was less than 5% after 20 d immersion in water. The antibacterial properties of the TiO2 pellets were studied. The sterilization rate of Colibacillus (hospital polluted water with bacterium) can reach 99% after 3 h photocatalytic process and these TiO2 pellets are easy to be re-activated and cyclically be used. The shaping mechanism and photocatalysis sterilization mechanism of the TiO2 pellets were discussed.

Keywords

TiO2 ceramic pellet / photocatalysis / antibacterial properties

Cite this article

Download citation ▾
Yadong Yao, Yongdi Li, Wei Shao, Yunqing Kang, Hongjing Wang, Zhongbin Huang, Xiaoming Liao, Guangfu Yin. Antibacterial properties of TiO2 ceramic pellets prepared using nano TiO2 powder. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(3): 337-342 DOI:10.1007/s11595-009-3337-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blake D. M., Maness P. C., Huang Z., . Application of the Photocatalytic Chemistry of Titanium Dioxide to Disinfection and the Killing of Cancer Cells[J]. Sep. Purif. Technol., 1999, 28(1): 1-50.

[2]

Block S. S., Peng V. P., Goswami D. W. Chemically Enhanced Sunlight for Killing Bacteria[J]. J. Solar Energy Engineering, 1997, 119(1): 185-191.

[3]

Kikuchi Y., Sunada K., Iyoda T., . Photocatalytic Bactericidal Effect of TiO2 Thin Films: Dynamic View of the Active Oxygen Species Responsible for the Effect[J]. J. Photoch. Photobio. A, 1997, 106(1–3): 51-56.

[4]

Sunada K., Kikuchi Y., Hashimoto K., . Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts[J]. Environ. Sci. Technol., 1998, 32(5): 726-728.

[5]

Linkous C.A., Carter G. J., Locuson D. B., . Photocatalytic Inhibition of Algae Growth Using TiO2, WO3 and Cocatalyst Modifications[J]. Environ. Sci. Technol., 2000, 34(22): 4 754-4 758.

[6]

Kashige N., Kakita Y., Nakashima Y., . Mechanism of the Photocatalytic Inactivation of Lactobacillus Casei Phage PL-1 by Titania Thin Film[J]. Curr. Microbiol., 2001, 42: 184-189.

[7]

Allen N. S., Edge M., Ortega A., . Interrelationship of Spectroscopic Properties with the Thermal and Photochemical Behaviour of Titanium Dioxide Pigments in Metallocene Polyethylene and Alkyd Based Paint Films Micron versus Nanoparticles[J]. Polym. Degrad. Stabil., 2002, 76(2): 305-319.

[8]

Corrales T., Peinado C., Allen N. S., . Chemiluminescence Study of Micron and Nanoparticle Titanium Dioxide: Effect on the Thermal Stability of Metallocene Polyethylene[J]. J. Photoch. Photobio. A, 2003, 156(1–3): 151-160.

[9]

Edge M., Janes R., Robinson J., . Microwave Photodielectric and Photoconductivity Studies on Titanium Dioxide Exposed to Continuous, Polychromatic Irradiation: part I: a Novel Analytical Tool to Assess the Photoactivity of Titanium Dioxide[J]. J. Photoch. Photobio. A, 1998, 113(2): 171-180.

[10]

Janes R., Edge M., Robinson J., . Microwave Photodielectric and Photoconductivity Studies on Titanium Dioxide Exposed to Continuous Polychromatic Irradiation, part II: Correlation of the Microwave Response with Changes in Sample Microstructure during Milling[J]. J. Photoch. Photobio. A, 1999, 127(1–3): 111-115.

[11]

Verran J., Taylor R. L., Lees G. C. Bacterial Adhesion to inert Thermoplastic Surfaces[J]. J. Mater. Sci.: Mat. Med., 1996, 7(10): 597-601.

[12]

Beadle I. R., Verran J. The Survival and Growth of an Environmental Klebsiella Isolate in Detergent Solutions[J]. J. Appl. Microbiol., 1999, 87(5): 764-769.

[13]

Janes R., Edge M., Rigby J., . The Effect of Sample Treatment and Composition on the Photoluminescence of Anatase Pigments[J]. Dyes and Pigments, 2001, 48(1): 29-34.

[14]

Allen N. S., Edge M., Sandoval G., . Photocatalytic Coatings for Environmental Applications[J]. Photoch. and Photobio., 2005, 81: 279-290.

[15]

Verran J., Sandoval G., Allen N. S., . Variables Affecting the Antibacterial Properties of Nano and Pigmentary Titania Particles in Suspension[J]. Dyes and Pigments, 2007, 73(3): 298-304.

[16]

Mahmoodi N. M., Arami M., Limaee N. Y., . Decolorization and Mineralization of Textile Dyes at Solution Bulk by Heterogeneous Nanoparticles of Titanium Dioxide[J]. Colloid. Surface. A, 2006, 290(1–3): 125-131.

[17]

Minabe T., Tryk D. A., Sawunyama P., . TiO2-mediated Photodegradation of Liquid and Solid Organic Compounds[ J]. J. Photoch. Photobio. A, 2000, 137(1): 53-62.

[18]

Zhang L. D. Preparation and Application on Ultra-Micropowder[M], 2004 Beijing China Sinopec Press 14-15.

[19]

Siegel R. W. Nanostructured Materials-Mind over Matter[J]. Nanostructured Mater., 1995, 5(1): 1

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/