Point-piezomagnetic properties of the FeCuNbSiB alloy strips

Zhenghou Zhu , Yuhong Huang , Daguo Jiang , Guangbin Ma , Hui Song

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (1) : 114 -118.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (1) : 114 -118. DOI: 10.1007/s11595-009-1114-8
Article

Point-piezomagnetic properties of the FeCuNbSiB alloy strips

Author information +
History +
PDF

Abstract

The piezomagnetic properties of rapidly quenched Fe73.5Cu1Nb3Si13.5B9 alloy strips were investigated in as-quenched state and after annealing for 2 h in vacuum in the temperature range of 100–300 °C. The impedance of amorphous strips increases with frequency, and sensitively decreases with stress increasing, especially in the frequency range of 10–100 MHz. The impedance increases approximately linearly with frequency below the critical frequency, but begins to decrease non-linearly with frequency above the critical frequency. The higher the point compressive stress is, the smaller the critical frequency will be. The stability of piezomagnetic properties is very excellent. The impedance of amorphous strips after annealing, especially at 300 °C, decreases very strongly. The impedance and the absolute values of the sensitive degree of couple layers’ amorphous strips are lower than those of single layer strips.

Keywords

piezomagnetic properties / amorphous strips / impedance

Cite this article

Download citation ▾
Zhenghou Zhu, Yuhong Huang, Daguo Jiang, Guangbin Ma, Hui Song. Point-piezomagnetic properties of the FeCuNbSiB alloy strips. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(1): 114-118 DOI:10.1007/s11595-009-1114-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y Yoshizawa, Y Oguna, K Yamaguchi. New Fe Based Soft

[2]

Magnetic Alloys Composed of Ultrafine Grain Structure[J]. J. Appl. Phys., 1988, 64: 6 044–6 048

[3]

Noh H. T., Pi W. K., Kim H. J., . Magnetic Properties of Fe73.5CuNb3(SixB1−x)22.5 (x = 0.5–0.8) Alloys with Ultrafine Grain Structure[J]. J. Appl. Phys., 1991, 69: 5 921-5 925.

[4]

Herzer G. Nanocrystalline Soft Magnetic Materials[J]. Phys. Scripta, 1993, 49: 307-309.

[5]

Bonetti E., Del Bianco L., Tiberto P. Inelastic and Magnetoelastic Effects and Microstructural Evolution of the Fe73.5Cu1Nb3Si13.5B9 Alloy[J]. J. Magn. Magn. Mater., 1995, 140: 477-483.

[6]

Kaczkowski Z., Lanotte L., Muller M. Magnetomechanical Coupling in the Fe73.5Cu1Nb3Si15.5B7 Metallic Glass after Annealings in Vacuum at 300–560 °C[J]. J. Magn. Magn. Mater., 1995, 144: 325-331.

[7]

Kaczkowski Z., Matkinski L., Muller M. Young’s Modulus Dependence on Magnetic Bias Field in Fe73.5Cu1Nb3Si16.5B6 Alloy after Successive Annealings[J]. IEEE Trans. Magn., 1995, 31: 791-796.

[8]

Chazal H., Geoffroy O., Porteseil J. L., . Infuence of Magnetoelastic Effects on the Coercivity of Ultrasoft Nanocrystalline Alloys[J]. Journal of Magnetism and Magnetic Materials, 2004, 272: 1 436-1 438.

[9]

Barandiaran J. M., Gutierrez J., Gomez-Polo C. New Sensors Based on the Magnetoelastic Resonance of Metallic Glasses[J]. Sensors and Actuators, 2000, 81: 154-157.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/