Inhibition of inositol-1-phosphate synthetase in Mycobacterium tuberculosis by chitosan-antisense nanoparticles

Yuanyuan Li , Zhifei Chen , Hongling Zhang , Xiaobo Li , Jie Shen , Shi Lu , Shunqing Xu

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (1) : 87 -90.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (1) : 87 -90. DOI: 10.1007/s11595-009-1087-7
Article

Inhibition of inositol-1-phosphate synthetase in Mycobacterium tuberculosis by chitosan-antisense nanoparticles

Author information +
History +
PDF

Abstract

Oligodeoxynucleotides (ODNs) were combined with the biodegradable polymer chitosan to form chitosan-ODN nanoparticles by complex coacervation, in order to improve the stability and intracellular penetration. The diameter of the nanoparticles was light strength size and ranged between 60 and 219 nm with a mean value of 132 nm, while zeta potential was between +12 and +20 mV at pH 5.5. The chitosan-ODN nanoparticles could partially protect the encapsulated ODN from nuclease degradation. Moreover, chitosan-ODN nanoparticles were much more effective in inhibiting the proliferation of M.tuberculosis than free ODN.

Keywords

chitosan / antisense / oligodeoxynucleotides / nanoparticle / tuberculosis

Cite this article

Download citation ▾
Yuanyuan Li, Zhifei Chen, Hongling Zhang, Xiaobo Li, Jie Shen, Shi Lu, Shunqing Xu. Inhibition of inositol-1-phosphate synthetase in Mycobacterium tuberculosis by chitosan-antisense nanoparticles. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(1): 87-90 DOI:10.1007/s11595-009-1087-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Who. The WHO Global Tuberculosis Program. 2006

[2]

Belisle J. T., Vissa V. D., Sievert T., . Role of the Major Antigen of Mycobacterium Tuberculosis in Cell Wall Biogenesis[J]. Science, 1997, 276(5317): 1 420-1 422.

[3]

Lambert G., Fattal E., Couvreur P. Nanoparticulate Systems for the Delivery of Antisense Oligonucleotides[J]. Adv. Drug. Deliv. Rev., 2001, 47(1): 99-112.

[4]

Shaw J. P., Kent K., Bird J., . Modified Deoxyoligonucleotides Stable to Exonuclease Degradation in Serum[J]. Nucleic Acids Res, 1991, 19(4): 747-750.

[5]

Harth G., Horwitz M. a., Tabatadze D., . Targeting the Mycobacterium Tuberculosis 30/32-kDa Mycolyl Transferase Complex as a Therapeutic Strategy Against Tuberculosis: Proof of Principle by Using Antisense Technology[J]. Proc Natl Acad Sci USA, 2002, 99(24): 15 614-15 619.

[6]

Harth G., Zamecnik P. C., Tang J. Y., . Treatment of Mycobacterium Tuberculosis with Antisense Oligonucleotides to Glutamine Synthetase mRNA Inhibits Glutamine Synthetase Activity, Formation of the Poly-L-glutamate/glutamine Cell Wall Structure, and Bacterial Replication[J]. Proc Natl Acad Sci USA, 2000, 97(1): 418-423.

[7]

Rapaport E., Levina A., Metelev V., . Antimycobacterial Activities of Antisense Oligodeoxynucleotide Phosphorothioates in Drug-resistant Strains[J]. Proc Natl Acad Sci USA, 1996, 93(2): 709-713.

[8]

Chen X., Dudgeon N., Shen L., . Chemical Modification of Gene Silencing Oligonucleotides for Drug Discovery and Development[J]. Drug Discov Today, 2005, 10(8): 587-593.

[9]

Junghans M., Kreuter J., Zimmer A. Antisense Delivery Using Protamine-oligonucleotide Particles[J]. Nucleic Acids Res, 2000, 28(10): 45

[10]

Aukunuru J. V., Ayalasomayajula S. P., Kompella U. B. Nanoparticle Formulation Enhances the Delivery and Activity of a Vascular Endothelial Growth Factor Antisense Oligonucleotide in Human Retinal Pigment Epithelial Cells[J]. J Pharm Pharmacol, 2003, 55(9): 1 199-1 206.

[11]

Mao H. Q., Roy K., Troung-Le V. L., . Chitosan-DNA Nanoparticles as Gene Carriers: Synthesis, Characterization and Transfection Efficiency[J]. J Control Release, 2001, 70(3): 399-421.

[12]

Fahey R. C. Novel Thiols of Prokaryotes[J]. Annu Rev Microbiol, 2001, 55: 333-356.

[13]

Chew J. L., Wolfowicz C. B., Mao H. Q., . Chitosan Nanoparticles Containing Plasmid DNA Encoding House Dust Mite Allergen, Der p 1 for Oral Vaccination in Mice[J]. Vaccine, 2003, 21(21–22): 2 720-2 729.

[14]

Curotto E., Aros F. Quantitative Determination of Chitosan and the Percentage of Free Amino Groups[J]. Anal Biochem, 1993, 211(2): 240-241.

[15]

Iwakura T. S. K. K. Y. Studies on Chi, II, Effect of Deacetylation on Solubility[J]. Macromol. Chem, 1976, 177(12): 3 589-3 600.

[16]

Xu Y., Du Y. Effect of Molecular Structure of Chitosan on Protein Delivery Properties of Chitosan Nanoparticles[J]. Int J Pharm, 2003, 250(1): 215-226.

[17]

Roy K., Mao H. Q., Huang S. K., . Oral Gene Delivery with Chitosan — DNA Nanoparticles Generates Immunologic Protection in a Murine Model of Peanut Allergy[J]. Nat Med, 1999, 5(4): 387-391.

[18]

Lee R. E., Brennan P. J., Besra G. S. Mycobacterium Tuberculosis Cell Envelope [J]. Curr Top Microbiol Immunol, 1996, 215: 1-27.

[19]

Barry C. E., Lee R. E., Mdluli K., . Mycolic Acids: Structure, Biosynthesis and Physiological Functions[J]. Prog Lipid Res, 1998, 37(2–3): 143-179.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/