Surface-modified biphasic calcium phosphate/poly (L-lactide) biocomposite

Weizhong Yang , Guangfu Yin , Dali Zhou , Lijun Youyang , Linhong Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (1) : 81 -86.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (1) : 81 -86. DOI: 10.1007/s11595-009-1081-0
Article

Surface-modified biphasic calcium phosphate/poly (L-lactide) biocomposite

Author information +
History +
PDF

Abstract

Biphasic calcium phosphate (BCP) powders were prepared by hydrolyzation process and surface-modified by directly grafted L-lactide (LLA) onto the surface of BCP through a chemical linkage. The grafting ratio of organic groups was 9 wt%. After surface modification, the surface of BCP powders was covered by the lamella-shaped crystal. Poly (L-lactide) was mixed with BCP to form the BCP/PLLA biocomposite. Modified BCP (mBCP) particles could be uniformly dispersed in PLLA matrix. The compressive strength of the mBCP/PLLA composite is 115 MPa, 28% higher than that of unmodified-BCP/PLLA composite. The improved mechanical strength is attributed to the enhanced adhesion between the inorganic BCP filler and the organic PLLA matrix.

Keywords

biphasic calcium phosphate (BCP) / surface modification / grafting / composite / poly L-lactide

Cite this article

Download citation ▾
Weizhong Yang, Guangfu Yin, Dali Zhou, Lijun Youyang, Linhong Chen. Surface-modified biphasic calcium phosphate/poly (L-lactide) biocomposite. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(1): 81-86 DOI:10.1007/s11595-009-1081-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Suchanek W., Yoshimura M. Processing and Properties of Hydroxyapatite-based Biomaterials for Use as Hard Tissue Replacement[J]. J. Mater. Res., 1998, 13(1): 94-117.

[2]

Ignjatovich N., Savich V., Najman S., . A Study of HAp/PLLA Composite as a Substitute for Bone Powder, Using FT-IR Spectroscopy[J]. Biomaterials., 2001, 22(6): 571-575.

[3]

Ignjatovic N., Uskokovic D. Synthesis and Application of Hydroxyapatite/Polylactide Composite Biomaterial[J]. Appl. Surf. Sci., 2004, 238(1–4): 314-319.

[4]

Zhou D. L., Yang W. Z., Yin G. F., . In Vitro Characterizations of PLLA/β-TCP Porous Matrix Materials and rMSC-PLLA-β-TCP Composite Scaffolds[J]. J. Mater. Sci. Technol., 2004, 20(3): 248-252.

[5]

Oonishi H., Kushitani S., Iwaki H., . Comparative Bone Formation in Several Kinds of Bioceramic Granules[J]. Bioceramics, 1995, 8: 137-144.

[6]

Balac I., Uskokovic P. S., Ignjatovic N., . Stress Analysis in Hydroxyapatite/Poly-L-lactide Composite Biomaterials[J]. Comp. Mater. Sci., 2001, 20(2): 275-283.

[7]

Kruyt M. C., Dhert W. J. A., Yuan H. P., . Bone Tissue Engineering in a Critical Size Defect Compared to Ectopic Implantations in the Goat[J]. J. Orthop. Res., 2004, 22(3): 544-551.

[8]

J D de Bruijn, R Dalmeijer, K de Groot. Osteoinduction by Microstructured Calcium Phosphates[C]. Transactions of the 25th Annual Meeting of Society for Biomaterials, RI, USA, 1999, 235

[9]

Yuan H. P., Kurashina K., de Bruijn J. D., . A Preliminary Study on Osteoinduction of Two Kinds of Calcium Phosphate Ceramics[J]. Biomaterials., 1999, 20(19): 1 799-1 806.

[10]

Boden S. D. Bioactive Factors for Bone Tissue Engineering[J]. Clin. Orthop., 1999, 367S: 84-94.

[11]

Bruder S. P., Fox B. S. Tissue Engineering of Bone[J]. Clin. Orthop., 1999, 367S: 68-83.

[12]

Yuan H. P., Yang Z. J., de Bruijin J. D., . Material-dependent Bone Induction by Calcium Phosphate Ceramics: a 2.5-year Study in Dog[J]. Biomaterials, 2001, 22(19): 2 617-2 623.

[13]

Yuan H. P., Yang Z. J., Li Y. B., . Osteoinduction by Calcium Phosphate Biomaterials[J]. J. Mater. Sci.: Mater. Med., 1998, 9(2): 723-726.

[14]

Yuan H. P., den Doel M. V., Li S. H., . A Comparison of the Osteoinductive Potential of Two Calcium Phosphate Ceramics Implated Intrmuscularly in Goats[J]. J. Mater. Sci.: Mater. Med., 2002, 13(12): 1 271-1 275.

[15]

Kurashina K., Kurita H., Wu Q., . Ectopic Osteogenesis with Biphasic Ceramics of Hydroxyapatite and Tricalcium Phosphate in Rabbits[J]. Biomaterials, 2002, 23(2): 407-412.

[16]

Yang W. Z., Zhou D. L., Yin G. F., . Progress of Biphasic Calcium Phosphate Bioceramic as Scaffold Materials of Bone Tissue Engineering[J]. J. Chinese Ceram. Soc., 2004, 32(9): 1 143-1 149.

[17]

Legeros R. Z., Lin S., Rohanizadeh R., . Biphasic Calcium Phosphate Biocramics: Preparation, Properties and Applications[J]. J. Mater. Sci.: Mater. Med., 2003, 14(3): 201-209.

[18]

Daculsi G., Laboux O., Malarad O., . Current State of the Art of Biphasic Calcium Phosphate Bioceramics[J]. J. Mater. Sci.: Mater. Med., 2003, 14(3): 195-200.

[19]

Hong Z. K., Qiu X. Y., Sun J. R., . Grafting Polymerization of L-lactide on the Surface of Hydroxyapatite Nano-crystals[J]. Polymer, 2004, 45(19): 6 699-6 706.

[20]

Liu Q., de Wijn J. R., de Groot K., . Surface Modification of Nano-apatite by Grafting Organic Polymer[J]. Biomaterials., 1998, 19(11–12): 1 067-1 072.

[21]

Qiu X. Y., Hong Z. K., Hu J. L., . Hydroxyapatite Surface Modified by L-lactic Acid and Its Subsequent Grafting Polymerization of L-lactide[J]. Biomacromolecules., 2005, 6(3): 1 193-1 199.

[22]

Nishizawa K., Toriyama M., Suzuki T., . Surface Analysis of Calcium Phosphate Ceramics Modified with Silane Couping Reagents[J]. J. Chem. Soc. Jpn., 1995, 63: 67-70.

[23]

Liu Q., de Wijn J. R., Bakker D., . Polyacids as Bonding Agents in Hydroxyapatite Polyester-ether (PolyactiveTM 30/70) Composites[J]. J. Mater. Sci.: Mater. Med., 1998, 9(1): 23

[24]

Liu Q., de Wijn J. R., van Blitterswijk C. A. Composite Biomaterials with Chemical Bonding Between Hydroxyapatite Filler Particles and PEG/PBT Copolymer Matrix[J]. J. Biomed. Mater. Res., 1998, 40(3): 490

[25]

Li Y., Zhang Y., Yin G. F., . Surface Modification in Manufacture of β-Tricalcium Phosphate/Poly(L-lactic Acid) Composite Scaffold Materials[J]. J. Funct. Mater., 2005, 36(2): 298-300.

[26]

Bouler J. M., Legeros R. Z., Daculsi G. Biphasic Calcium phosphates: Influence of Three Synthesis Parameters on the HA/b-TCP Ratio[J]. J. Biomed. Mater. Res., 2000, 51(4): 680-684.

[27]

Kunze C., Freier T., Helwig E., . Surface Modification of Tricalcium Phosphate for Improvement of the Interfacial Compatibility with Biodegradable Polymers[J]. Biomaterials., 2003, 24(6): 967-974.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/