A convenient method for preparing shape-controlled ZnO nanocrystals in a polyol/water mixture system without surfactants

Junwu Zhu , Hongbo Liu , Xiaoheng Liu , Xin Wang , Xujie Yang , Lude Lu

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (1) : 30 -33.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (1) : 30 -33. DOI: 10.1007/s11595-009-1030-y
Article

A convenient method for preparing shape-controlled ZnO nanocrystals in a polyol/water mixture system without surfactants

Author information +
History +
PDF

Abstract

A facile solution-phase route for the synthesis of shape-controlled ZnO nanocrystals in a polyol/water mixture system was developed. The obtained nanocrystals were characterized by X-ray diffraction, transmission electron microscopy and UV-visible absorption spectroscopy. The results indicate that modulating the adding ways of water has a significant effect on the shape of the obtained nanocrystals. The addition of small quantity of water can increase the growth rate of crystals and leads to the formation of different shapes. The resulting shapes of the novel structures are diverse, including spheres, cones, and teardrops, all of which are obtained without any additional surfactants. These studies concerning the shape evolution of nanocrystals should be valuable for further design and for greater understanding of advanced nanoscale building-block architectures.

Keywords

shape-controlled / ZnO / nanocrystals / preparation / polyol/water

Cite this article

Download citation ▾
Junwu Zhu, Hongbo Liu, Xiaoheng Liu, Xin Wang, Xujie Yang, Lude Lu. A convenient method for preparing shape-controlled ZnO nanocrystals in a polyol/water mixture system without surfactants. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(1): 30-33 DOI:10.1007/s11595-009-1030-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alivisatos A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots[J]. Science, 1996, 271: 933-937.

[2]

Huynh W. U., Dittmer J. J., Alivisatos A. P. Hybrid Nanorod-polymer Solar Cells[J]. Science, 2002, 295: 2 425-2 427.

[3]

Hyeon T. Chemical Synthesis of Magnetic Nanoparticles[J]. Chem. Commun., 2003, 8: 927-934.

[4]

Liu B., Zeng H. C. Mesoscale Organization of CuO Nanoribbons: Formation of “Dandelions”[J]. J. Am. Chem. Soc., 2004, 126: 8 124-8 125.

[5]

Manna L., Scher E. C., Alivisatos A. P. Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-shaped CdSe Nanocrystals[J]. J. Am. Chem. Soc., 2000, 122: 12 700-12 706.

[6]

Peng X. G., Manna L., Yang W. D., . Shape Control of CdSe Nanocrystals[J]. Nature, 2000, 404: 59-61.

[7]

Song Q., Zhang Z. J. Shape Control and Associated Magnetic Properties of Spinel Cobalt Ferrite Nanocrystals[J]. J. Am. Chem. Soc., 2004, 126: 6 164-6 168.

[8]

Yu D., Yam V. W. Controlled Synthesis of Monodisperse Silver Nanocubes in Water[J]. J. Am. Chem. Soc., 2004, 126: 13 200-13 201.

[9]

Guo L., Ji Y. L., Xu H. B., . Regularly Shaped, Single- crystalline ZnO Nanorods with Wurtzite Structure[J]. J. Am. Chem. Soc., 2002, 124: 14 864-14 865.

[10]

Xu J. Q., Chen Y. P., Li Y. D., . Gas Sensing Properties of ZnO Nanorods Prepared by Hydrothermal Method[J]. J. Mater. Sci., 2005, 40: 2 919-2 921.

[11]

Zhang J., Sun L. D., Pan H. Y., . ZnO Nanowires Fabricated by a Convenient Route[J]. New J. Chem., 2002, 26: 33-34.

[12]

Zhang J., Yu W. Y., Zhang L. D. Fabrication of Semiconducting ZnO Nanobelts Using a Halide Source and Their Photoluminescence Properties[J]. Phys. Lett. A, 2002, 299: 276-281.

[13]

Hu J. Q., Li Q., Meng X. M., . Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes[J]. Chem. Mater., 2003, 15: 305-308.

[14]

Hu J. Q., Li Q., Wong N. B., . Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers[J]. Chem. Mater., 2002, 14: 1 216-1 219.

[15]

Sun X. M., Chen X., Li Y. D. Evaporation Growth of Multipod ZnO Whiskers Assisted by a Cu2+ Etching Technique[J]. J. Cryst. Growth., 2002, 244: 218-223.

[16]

Sun Y. G., Xia Y. N. Large-scale Synthesis of Uniform Silver Nanowires through a Soft, Self-seeding, Polyol Process[J]. Adv. Mater., 2002, 14: 833-837.

[17]

Chen J., Herricks T., Geissler M., . Single-crystal Nanowires of Platinum Can be Synthesized by Controlling the Reaction Rate of a Polyol Process[J]. J. Am. Chem. Soc., 2004, 126: 10 854-10 855.

[18]

Sun Y., Gates B., Mayers B., . Crystalline Silver Nanowires by Soft Solution Processing[J]. Nano Lett., 2002, 2: 165-168.

[19]

Jezequel D., Guenot J., Jouini N., . Submicrometer Zinc Oxide Particles: Elaboration in Polyol Medium and Morphological Characteristics[J]. J. Mater. Res., 1995, 10: 77-83.

[20]

Li W. J., Shi E. W., Zhong W. Z., . Growth Mechanism and Growth Habit of Oxide Crystals[J]. J. Cryst. Growth, 1999, 203: 186-196.

[21]

Srikant V., Clarke D. R. On the Optical Band Gap of Zinc Oxide[J]. J. Appl. Phys., 1998, 83: 5 447-5 451.

[22]

Wong E. M., Bonevich J. E., Searson P. C. Growth Kinetics of Nanocrystalline ZnO Particles from Colloidal Suspensions[ J]. J. Phys. Chem. B, 1998, 102: 7 770-7 775.

[23]

Brus L. Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory[J]. J. Phys. Chem., 1986, 90: 2 555-2 560.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/