Spark plasma sintered AlN-BN composites and its thermal conductivity

Haiyang Zhao , Weimin Wang , Hao Wang , Zhengyi Fu

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (6) : 866 -869.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (6) : 866 -869. DOI: 10.1007/s11595-007-6866-4
Article

Spark plasma sintered AlN-BN composites and its thermal conductivity

Author information +
History +
PDF

Abstract

A series of samples of hexagonal boron nitride-aluminum nitride ceramic composites with different amounts of CaF2 as sintering aid were prepared by spark plasma sintered at 1700–1850 °C for 5 min. The addition of CaF2 effectively lowered the sintering temperature and promoted the densification of AlN-BN composites. With the increase of sintering temperature, the density increased, and the contiguity of AlN grains enhanced in AlN-BN composites. Thermal conductivity of AlN-BN composites increased with the increase in CaF2 content and sintering temperature, and there is a maximum value of 78.6 W·m−1·K−1 when the sample with 3wt% CaF2 sintered at 1800 °C.

Keywords

AlN-BN composites / thermal conductivity / SPS

Cite this article

Download citation ▾
Haiyang Zhao, Weimin Wang, Hao Wang, Zhengyi Fu. Spark plasma sintered AlN-BN composites and its thermal conductivity. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(6): 866-869 DOI:10.1007/s11595-007-6866-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gonzalez M., Ibarra A. The Dielectric Behavior of Commercial Polycrystalline Aluminum Nitride [J]. Diamond and Related Materials, 2000, 9(3–6): 467-471.

[2]

Slack C. A. Nonmetallic Crystals with High Thermal Conductivity[J]. J. Phys. Chem. Solids., 1973, 34(2): 321-335.

[3]

Sheppard L. M. Aluminum Nitride: A Versatile but Challenging Material[J]. Ceramic Bulletin, 1990, 60(11): 1801-1812.

[4]

Komiyama B., Kiyokawa M., marstui T. Open Resonator for Precision Dielectric Measurements in the 100 GHz Band[J]. IEEE Trans. on Microwave Theory and Techniques, 1991, 39(10): 1792-1799.

[5]

Qin M., Qu X., Duan B., . Fabrication of High Density AlN-BN Composite Ceramics by Presureless Sintering[J]. Journal of Inorganic Materials, 2005, 20(1): 245-250.

[6]

Jia T., Wang W.-m. Processing Research of AlN-BN Composites Fabricated by In Situ Reaction[J]. Journal of Wuhan University of Technology, 2006, 28(1): 1-3.

[7]

Zhang G., Yang J., Ando M., . Reaction Synthesis of Aluminum Nitride-Boron Nitride Composites Based on the Nitridation of Aluminum Boride[J]. J. Am. Ceram. Soc., 2002, 85(12): 938-944.

[8]

Kusunose T., Sekino T., Kim B.-S., . Properties of Hot-Pressed AlN/BN Nanocomposites[J]. Material Science Forum, 2003, 439: 131-136.

[9]

Guo S., Wang W. Fabrication of C/BN Laminated Composites by Spark Plasma Sintering[J]. Journal of Wuhan University of Technology, 2006, 28(12): 8-10.

[10]

Khor K. A., Cheng K. H., Yu L. G., . Thermal Conductivity and Dielectric Constant of Spark Plasma Sintered Aluminum Nitride[J]. Materials Science and Engineering A, 2003, 347(1–2): 303-305.

[11]

Xiong Y., Fu Z. Y., Wang H., . Microstructure and IR Transmittance of Spark Plasma Sintering Translucent AlN Ceramics with CaF2 Additive[J]. Materials Science and Engineering B, 2005, 123: 57-62.

[12]

Greil P., Kulig M., Hotza D. Aluminum Nitride Ceramics with High Thermal Conductivity from Gas-Phase Synthesized Powders[J]. J. Eur. Ceram. Soc., 1994, 13(3): 229-237.

[13]

Qiao L., Zhou H., Chen K., . Effects of Li2O on the Low Temperature Sintering and Thermal Conductivity of AlN Ceramics[J]. J. Eur. Ceram. Soc., 2003, 23(9): 1517-1524.

[14]

Tajika M., Matsubara H., Rafanicllo W. Effect of Grain Contiguity on the Thermal Diffusivity of Aluminum Nitride[J]. J. Am. Ceram. Soc., 1999, 82(6): 1573-1575.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/