Hemoglobin-biocatalyzed synthesis of conducting molecular complex of polyaniline and lignosulfonate

Xing Hu , Shenggui Liu , Mingming Zhao , Guolin Zou

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (6) : 809 -815.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (6) : 809 -815. DOI: 10.1007/s11595-007-6809-0
Article

Hemoglobin-biocatalyzed synthesis of conducting molecular complex of polyaniline and lignosulfonate

Author information +
History +
PDF

Abstract

A new biocatalyst route for the synthesis of a conducting polyaniline (PANI)/lignosulfonate (LGS) complex was presented. Four different catalysts such as hemoglobin (Hb), 5, 10, 15, 20-tetrakis (meso-hydroxyphenyl) porphyrin, iron (II) tetrasulfophthalocyanine and ferric chloride were used to polymerize aniline in the presence of a natural polyelectrolytes template LGS. The experimental results show that Hb is an effective catalyst in this case and the synthesis is simple, and the conditions are mild in that the polymerization may be carried out in lower pH (1.0–4.0) buffered solution and optimal pH of 2.0. Varying concentrations of aniline, LGS and H2O2 in feed the favorable conditions for the production of PANI were determined. UV-vis absorption, FTIR, elemental analysis, conductivity, cyclic voltammetry and thermogravimetric analyses confirm the formation of thermally stable and electroactive PANI.

Keywords

hemoglobin / polyaniline / biocatalyst / conductivity / lignosulfonate

Cite this article

Download citation ▾
Xing Hu, Shenggui Liu, Mingming Zhao, Guolin Zou. Hemoglobin-biocatalyzed synthesis of conducting molecular complex of polyaniline and lignosulfonate. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(6): 809-815 DOI:10.1007/s11595-007-6809-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akkara J. A., Senceal K. J., Kaplan D. L. Synthesis and Characterization of Polymers Produced by Horseradish Peroxodase in Dioxane[J]. J. Polym. Sci., Polym. Chem., 1991, 29(3): 1561-1568.

[2]

Karamyshev A. V., Shleev S. V., Koroleva O. V., . Laccase-catalyzed Synthesis of Conducting Polyaniline[J]. Enzyme Microb. Technol., 2003, 33(9): 556-564.

[3]

Sakharov I. Y., Vorobiev A. C., Castillo Leon J. J. Synthesis of Polyelectrolyte Complexes of Polyaniline and Sulfonated Polystyrene by Palm Tree Peroxidase[J]. Enzyme Microb. Technol., 2003, 33(9): 661-667.

[4]

Sakharov I. Y., Ouporov I. V., Vorobiev A. C., . Modeling and Characterization of Polyelectrolyte Complex of Polyaniline and Sulfonated Polystyrene Produced by Palm Tree Peroxidase[J]. Synth. Met., 2004, 142(1–3): 127-135.

[5]

Zhang K., Cai R. X., Chen D. H. Determination of Hemoglobin Based on Its Enzymatic Activity of the Oxidation of o-Phenylenediamine with Hydrogen Peroxide as an Oxidant[J]. Analy. Chim. Acta, 2000, 413(1–2): 109-113.

[6]

Li H. C. Study on the Catalytic Reaction Mechanism with Hemoglobin as Mimetic Enzyme[D], 2002. Wuhan: Wuhan University.

[7]

Hu X., Zhang Y. Y., Tang K., . Hemoglobin-biocatalysts Synthesis of a Conducting Molecular Complex of Polyaniline and Sulfonated Polystyrene[J]. Synth. Met., 2005, 150(1): 1-7.

[8]

Hu X., Zhang Y. Y., Li C. H., . Synthesis of A Conducting Polyaniline by Hemoglobin as Biocatalyst[J]. Acta Chim. Sinica, 2005, 63(1): 33-38.

[9]

Roy S., Fortier J. M., Nagarajan R., . Biomimetic Synthesis of a Water Soluble Conducting Molecular Complex of Polyaniline and Lignosulfonate[J]. Biomacromolecules, 2002, 3(5): 937-941.

[10]

Boudet A. M. A New View of Lignification[J]. Trends in Plant Sci., 1998, 3(2): 67-71.

[11]

Gosselink R. J. A., Snijder M. H. B., Kranenbarg A., . Characterisation and Application of NovaFiber Lignin[J]. Industrial Crops and Products, 2004, 20(2): 191-203.

[12]

Baucher M., Christensen J. H., Meyermans H., . Applications of Molecular Genetics for Biosynthesis of Novel Lignins[J]. Polymer Degradation and Stability, 1998, 59(1): 47-52.

[13]

Wudl F., Angus R. O., Lu F. L., . Poly-p-phenyleneamineimine: Synthesis and Comparison to Polyaniline[J]. J. Am. Chem. Soc., 1987, 109(12): 3677-3684.

[14]

Liu W., Kumar J., Tripathy S. K., . Enzymatically Synthesized Conducting Polyaniline[J]. J. Am. Chem. Soc., 1999, 121(1): 71-78.

[15]

Premachandran R. S., Banerjee S., Wu X. K., . Enzymatic Synthesis of Fluorescent Naphthol-based Polymers[J]. Macromolecules, 1996, 29(20): 6452-6460.

[16]

Samuelson L. A., Anagnostopoulos A., Alva K. S., . Biologically Derived Conducting and Water Soluble Polyaniline[J]. Macromolecules, 1998, 31(13): 4376-4378.

[17]

Liu W., Cholli A. L., Nagarajan R., . The Role of Template in the Enzymatic Synthesis of Conducting Polyaniline[J]. J. Am. Chem. Soc., 1999, 121(49): 11345-11355.

[18]

Liu W., Kumar J., Tripathy S., . Enzymatic Synthesis of Conducting Polyaniline in Micelle Solutions[J]. Langmuir, 2002, 18(25): 9696-9704.

[19]

Hu X., Li X. W., Liu S. G., . Hemoglobin-biocatalyzed Synthesis of Conducting Polyaniline in Micellar Solutions [J]. Enzyme Microb. Technol., 2006, 38(5): 675-682.

[20]

Yue J., Wang Z. H., Cromack K. R., . Effect of Sulfonic Acid Group on Polyaniline Backbone[J]. J. Am. Chem. Soc., 1991, 113(7): 2665-2671.

[21]

Kim B. J., Oh S. G., Han M. G., . Synthesis and Characterization of Polyaniline Nanoparticles in SDS Micellar Solutions [J]. Synth. Met., 2001, 122(2): 297-304.

[22]

Gospodinova N., Mokreva P., Terlemezyan L. Alternative Concept of the Transition Emeraldine Base-emeraldine Salt [J]. Polymer, 1993, 34(6): 1330-1332.

[23]

Wang X., Schreuder-gibson H., Downey M., . Conductive Fibers from Enzymatically Synthesized Polyaniline[J]. Synth. Met., 1999, 107(2): 117-121.

[24]

Liu G., Freund M. S. New Approach for the Controlled Cross-linking of Polyaniline: Synthesis and Characterization[J]. Macromolecules, 1997, 30(19): 5660-5665.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/