Electronic band structures of TiO2 with heavy nitrogen doping

Jinbo Xue , Qi Li , Wei Liang , Jianku Shang

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (6) : 799 -803.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (6) : 799 -803. DOI: 10.1007/s11595-007-6799-y
Article

Electronic band structures of TiO2 with heavy nitrogen doping

Author information +
History +
PDF

Abstract

The first-principles density-functional calculation was conducted to investigate the electronic band structures of titanium dioxide with heavy nitrogen doping (TiO2−xN x). The calculation results indicate that when x ⩽ 0.25, isolated N 2p states appear above the valence-band maximum of TiO2 without a band-gap narrowing between O 2p and Ti 3d states. When x ⩾ 0.50, an obvious band gap narrowing between O 2p and Ti 3d states was observed along with the existence of isolated N 2p states above the valence-band of TiO2, indicating that the mechanism proposed by Asahi et al operates under heavy nitrogen doping condition.

Keywords

computer simulation / dopanted TiO2 / band structure

Cite this article

Download citation ▾
Jinbo Xue, Qi Li, Wei Liang, Jianku Shang. Electronic band structures of TiO2 with heavy nitrogen doping. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(6): 799-803 DOI:10.1007/s11595-007-6799-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Honda K., Fujishima A. Electrochemical Photocatalysis of Water at a Semi-conductor Electrode[J]. Natur., 1972, 238: 73-78.

[2]

Hashimoto K., Irie H., Fujishima A. TiO2 Photocatalysis: A Historical Over-view and Future Prospects[J]. Jpn. J. Appl. Phys., 2005, 44: 8269-8285.

[3]

Hoffman M. R., Martin S. T., Choi W. Enviromental Applications of Semi-conductor Photoanalysis[J]. Chem. Rev., 1995, 95: 69-96.

[4]

Hagfeldt A., Graetzel M. Light-Induced Redox Reactions in Nanocrystalline Systems[J]. Chem. Rev., 1995, 95: 49-68.

[5]

Einaga H., Futamura S., Ibusuki T. Photocatalytic Decomposition of Ben- zene over TiO2 in Humidified Air Stream[J]. Phys. Chem. Chem. Phys., 1999, 1: 4903-4908.

[6]

Fujishima A., Rao T. N., Tryk D. A. TiO2 Photocatalysts and Diamond Elec-trodes Eletrochimica Acta[J]. J. Photochem. Photobiol., 2000, C1: 1-21.

[7]

Ghosh A. K., Maruska H. P. Photoelectrolysis of Water in Sunlight with Sen-sitized Semiconductor Electrode[J]. J. Electrochem. Soc., 1977, 124: 1516-1522.

[8]

Choi W., Termin A., Hoffmann M. R. Role of Metal Ion Dopants in Quantum-sized TiO2 Correlation between Photoreactivity and Charge Carrier Recombination Dynamics[J]. J. Phys. Chem., 1994, 98: 13669-13679.

[9]

Breckenridge R. G., Hosler W. R. Electrical Properties of Titanium Dioxide Semiconductors[J]. Phys. Rev., 1953, 91: 793-802.

[10]

Cronemeyer D. C. Infrared Sbsorption of Reduced Rutile TiO2 Single Crystals[J]. Phys. Rev., 1953, 113: 1222-1226.

[11]

Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y. Visible-light Photo-catalysis in Nitrogen-doped Titanium Oxides[J]. Science., 2001, 293: 269-271.

[12]

Irie H., Watanabe Y., Hashimoto K. Nitrogen-concentration Dependence on Photocatalytic Activity of TiO2−xNx Powders[ J]. J. Phys. Chem. B, 2003, 107: 5483-5486.

[13]

Yin S., Zhang Q., Saito F., Sato T. Preparation of Visible-light Active Tita- nia Photocatalyst by Mechanochemical Method[J]. Chem.Lett., 2003, 32: 358-359.

[14]

Lindgren T., Mwabora J., Avendano M., Jonsson E. J., Hoel A., Granqvist C. G., Lindquist S. E. Photoelectrochemical and Optical Properties fo Nitrogen Doped Titanium Dioxides Films Prepared by Reactive DC Magnetron Sputtering[J]. J. Phys.Chem. B, 2003, 107: 5709-5716.

[15]

Khan S., Shahry M. A., Ingler W. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2[J]. Science., 2002, 297: 2243-2245.

[16]

Irie H., Watanabe Y., Hashimoto K. Carbon-doped Anatase TiO2 Powders as A Visible-light Sensitive Photocatalyst[J]. Chem.Lett., 2003, 32: 772-773.

[17]

Torres G. R., Lindgren T., Lu J., Granqvist C. G., Lindquist S. E. Photoelec-trochemical Study of Nitrogen-doped Titanium Dioxide for Water Oxidation[J]. J. Phys. Chem. B, 2004, 108: 5995-6003.

[18]

Nakamura R., Tanaka T., Nakato Y. Mechanism for Visible Light Responses in Anodic Photocurrents at N-doped TiO2 Film Electrodes [J]. J. Phys. Chem. B, 2004, 108: 10617-10620.

[19]

Lee J Y, Park J, Cho J H. Electronic Properties of N- and C-doped TiO2[J]. Appl. Phys. Lett., 2005, 87: 011904

[20]

Wu P. G., Ma C. H., Shang J. K. Effects of Nitrogen Doping on Optical Properties of TiO2 Thin Films[J]. Appl. Phys. A, 2005, 81: 1411-1417.

[21]

Ceperley D. M., Alder B. Ground State of Electron Gas by A Stochastic Method[J]. J. Phys. Rev. lett., 1980, 45: 566-569.

[22]

Kresse G., Hafner J. Norm-conserving and Ultrasoft Pseudopotentials for First-row and Transition Elements[J]. Condens.Matter., 1994, 6: 8245-8257.

[23]

Vanderbilt D. Soft Self-consistent Pseudopotentials in Generalized Eigenvalue Formalism[J]. Phys. Rev. B, 1990, 41: 7892-7895.

[24]

Asahi R., Taga Y., Mannstadt W., Freeman A. Electronic and Optical Properties of Anatase TiO2[J]. J. Phys. Rev. B, 2000, 61: 7459-7465.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/