Growth mechanism and characterization of ZnO 3D nanocrystals by laser irradiation & coaxially transporting O2

Kaiyu Luo , Boquan Li , Huanyan Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (6) : 783 -786.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (6) : 783 -786. DOI: 10.1007/s11595-007-6783-6
Article

Growth mechanism and characterization of ZnO 3D nanocrystals by laser irradiation & coaxially transporting O2

Author information +
History +
PDF

Abstract

Different three-dimension (3D) nanotetrapods, containing club-like nanocrystals, nanotetrapods and four-foot-like nanocrystals were synthesized from Zinc sheet via CO2 laser irradiation and coaxially transporting O2. Different nanoproducts were fabricated by changing the content of oxygen in the experiment. The morphologies, components, phase structures and optical properties of the products were investigated by a field-emission scanning electron microscopy, an X-ray diffraction, an energy dispersed X-ray spectrometer and a photoluminescence spectroscope. The X-ray diffraction spectra were obtained on a Rigaku D/max 2500PC diffractometer. The experimental results reveal that high quality ZnO nanotetrapods can be fabricated on the special parameters, and growth of ZnO nanotetrapods depends on Vapour-Liquid-Solid(VLS) model, and the content of oxygen in the gas, namely, oxygen partial pressure is one of main factors to control morphologies and optical properties of ZnO nanotetrapods; these advantages above are important for realization of optoelectronic devices.

Keywords

ZnO 3D nanotetrapods / laser irradiation / fabrication / growth mechanism / oxygen partial pressure

Cite this article

Download citation ▾
Kaiyu Luo, Boquan Li, Huanyan Zhang. Growth mechanism and characterization of ZnO 3D nanocrystals by laser irradiation & coaxially transporting O2. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(6): 783-786 DOI:10.1007/s11595-007-6783-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang M. H. Room-temperature Ultraviolet Nanowire Nanolasers[J]. Science, 2001, 292: 1897-1899.

[2]

Law M. Nanoribbon Waveguides for Subwavelength Photonics Integration[J]. Science, 2004, 305: 1269-1273.

[3]

Xun W. A General Strategy for Nanocrystal Synthesis[J]. Nature, 2005, 437: 121-124.

[4]

Rao C. N. R., Gundiah G., Deepak F. L., Govindaraj A., Cheetham A. K. Carbon-assisted Synthesis of Inorganic Nanowires[J]. J. Mater. Chem., 2004, 14: 440-445.

[5]

Xia Y. N., Yang P. D., Sun Y. G., . One-dimensional Nanostructures: Synthesis, Characterization, and Applications[J]. Adv. Mater., 2003, 15(5): 353-389.

[6]

Xu C. X., Sun X. W. Field Emission from Zinc Oxide Nanopins [J]. Appl. Phys. Lett., 2003, 83: 1249-1252.

[7]

Zhang H. Z., Sun X. C., Wang R. M., . Growth and Formation Mechanism of C-oriented ZnO Nanorod Arrays Deposited on Glass [J]. Crystal Growth, 2004, 269: 464

[8]

Pan Z. W., Dai Z. R., Wang Z. L. Nanobelts of Semiconducting Oxides[J]. Science, 2001, 291: 1947-1949.

[9]

Dai Z. R., Pan Z. W., Wang Z. L. Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation[J]. Adv. Funct. Mater., 2003, 13: 9-13.

[10]

Shen G. Z., Yoshio B., Cheol-Jin L. Synthesis and Optical Properties of S-Doped ZnO Nanostructures: Nanonails and Nanowires [J]. J. Phys. Chem. B, 2005, 109: 5491-5496.

[11]

Saitoh H., Okada Y., Ohshio S. Synthesis of MgO/ZnO Hetero-Epitaxial Whiskers Using Chemical Vapor Deposition Operated under Atmospheric Pressure[J]. J. Mater. Sci., 2002, 37: 4597-4602.

[12]

T Hirate, N Takei, T Satoh. Proceedings of 11th International Workshop on Inorganic and Organic Electroluminescence [C], Ghent, Belgium, September 2002, 23–26:81–85

[13]

Shen G. Z., Yoshio B., Cheol-Jin L. Synthesis and Evolution of Novel Hollow ZnO Urchins by a Simple Thermal Evaporation Process [J]. J.Phys.Chem.B, 2005, 109: 10578-10583.

[14]

Yan M., Zhang H. T., Widjaja E. J., . Self-assembly of Well-Aligned Gallium-doped Zinc Oxide Nanorods [J]. J. Appl. Phys., 2003, 94: 5240-5246.

[15]

Gao P. X., Ding Y., Mai W., . Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices. Science, 2005, 309: 1700-1704.

[16]

Zhang Y K, Lu J Z, Ren X D, et al. Effect of Laser Shock Processing on the Mechanical Properties and Fatigue Lives of the Turbojet Engine Blades Manufactured by LY2 Aluminum Alloy [J]. J. Mater. Design, 2008, doi: 10.1016/j. matdes. 2008.07. 017

[17]

Lu J. Z., Zhang Y. K., Zhou J., . Study on Growth Properties of ZnO Nanocrystals Fabrication by Laser Irradiation & Coaxially Transporting O2[J]. Journal of Jiangsu University, 2006, 27(5): 379-382.

[18]

Run W., Xie C. S., Xia H., . The Thermal Physical Formation of ZnO Nanoparticles and their Morphology [J]. J Crystal Growth, 2000, 217(4): 274-280.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/