The properties of YSZ electrolyte sintering at 1300 °C

Minfang Han , Xiuling Tang , Wu Shao

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (6) : 775 -778.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (6) : 775 -778. DOI: 10.1007/s11595-007-6775-6
Article

The properties of YSZ electrolyte sintering at 1300 °C

Author information +
History +
PDF

Abstract

The properties of yttria stabilized zirconia(YSZ) related to the sintering process were discussed. YSZ nano-powders about 40–100 nm as raw material, the sub-micrometer grain sizes such as 0.4–3 μm in YSZ were gotten by sintering process at 1300 °C, which was performed at 1000 °C for 2 h, then raised the temperature at the rate of 50 °C/h to 1400 °C, then decreased directly to 1300 °C in 30 minutes, finally at 1300 °C for 5–20 hours. The ratio of bigger grain size becomes larger as the holding time increasing at 1300 °C. The grains less than 1 μm are about 50%, eg, 43.2%, 52.2% and 51.1% related to 1300 °C holding 5 hours, 8 hours and 10 hours, respectively. As YSZ grain size became small, the electrical conductivities did not decrease, even increased, about 0.20 s/cm at 1000 °C. The reduced sintering temperature and time were benefited to co-fire with the electrodes in electrode-supported SOFCs.

Keywords

solid oxide fuel call(SOFC) / yttria stabilized zirconia (YSZ) / electrolyte / sub-micrometer grain / low temperature sintering process

Cite this article

Download citation ▾
Minfang Han, Xiuling Tang, Wu Shao. The properties of YSZ electrolyte sintering at 1300 °C. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(6): 775-778 DOI:10.1007/s11595-007-6775-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Minh N. Q., Takahashi T. Science and Technology of Ceramic Fuel Cells[M], 1995. Amsterdam: Elsevier.

[2]

Basu R. N., Blass G. Simplified Processing of Anode-supported Thin Film Planar Solid Oxide Fuel Cells[J]. Journal of the European Ceramic Society, 2005, 25(4): 463-471.

[3]

Orui H., Watanabe K., Arakara M. Electrochemical Characteristics of Tubular Flat-plate-SOFCs Fabricated by Co-firing Cathode Substrate and Electrolyte[J]. Journal of Power Sources, 2002, 112(1): 90-97.

[4]

Singhal S. C., Kendall K. High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications[M], 2004. The Boulevard, Langford Lane, Kidlington Oxford OX5 1GB, UK: Elsevier Advanced Technology. 5-8.

[5]

Souza S. D., Visco S. J., De Jonghe L. C. Thin-film Solid Oxide Fuel Cell with High Performance at Low Temperature[J]. Solid State Ionic, 1997, 98(1–2): 57-61.

[6]

Yamahara K., Jacobson C. P., Visco S. J., . Catalyst-infiltrated Supporting Cathode for Thin-film SOFCs[J]. Solid State Ionics, 2005, 176(5–6): 451-456.

[7]

Shi J. L., Ruan M. L., Yen T. S. Crystallite Growth in Yttria-Doped Superfine Zirconia Powders and Their Compacts: A Comparison between Y-TZP and YSZ[J]. Ceramics International, 1996, 22(2): 137-142.

[8]

Han M., Peng S., Sun Z., Duan Q. Manufacture Processing and Properties of Stabilized ZrO 2 Ultra Fine Powders for SOFC[C]. Proceeding of US-China Clean Energy Technology Forum, 2001, I: 161-169.

[9]

Han M., Yang C., Li B., Peng S. Properties of YSZ Electrolyte Thin Film by Tape Calendaring Process[J]. Battery, 2004, 34(3): 207-208.

[10]

Yin H., Han M. Grain Characteristics of Nanocrystalline ZrO2 Powders[J]. Key Engineering Materials, 2007, 336–338(3): 2558-2561.

[11]

Han M., Huo L., Li B., Peng S. Relation between Powder Size and Electrolyte Properties in the Nano YSZ System[J]. Journal of University of Science and Technology Beijing, 2005, 12(1): 78-80.

[12]

Han M., Li B., Peng S. Manufacture Process of 8Y2O3 Stabilized ZrO2 from Nano Powders[J]. Journal of Wuhan University of Technology. Material Science, 2004, 19(3): 10-13.

[13]

Han M., Peng S., Li B. Grain Characters and Sintering Properties of YSZ Nanocrystalline Powders[J]. Rare Metal Materials and Engineering, 2003, 32: 491-495.

[14]

Chen X. J., Khor K. A., Chan S. H., . Influence of Microstructure on the Ionic Conductivity of Yttria-stabilized Zirconia Electrolyte[J]. Materials Science and Engineering A, 2002, 335(1–2): 246-252.

[15]

Mondal P., Klein A., Jaegermann W., Hahn H. Enhanced Specific Grain Boundary Conductivity in Nanocrystalline Y2O3-stabilized Zirconia[J]. Solid State Ionic, 1999, 118(3–4): 331-339.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/