Flow stress behavior and processing map of Al-Cu-Mg-Ag alloy during hot compression

Sheng Yang , Danqing Yi , Hong Zhang , Sujuan Yao

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (5) : 694 -698.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (5) : 694 -698. DOI: 10.1007/s11595-007-5694-x
Article

Flow stress behavior and processing map of Al-Cu-Mg-Ag alloy during hot compression

Author information +
History +
PDF

Abstract

The hot deformation behavior of Al-Cu-Mg-Ag was studied by isothermal hot compression tests in the temperature range of 573–773 K and strain rate range of 0.001–1 s−1 on a Gleeble 1500 D thermal mechanical simulator. The results show the flow stress of Al-Cu-Mg-Ag alloy increases with strain rate and decreases after a peak value, indicating dynamic recovery and recrystallization. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate and temperature, the flow stress equation is estimated to illustrate the relation of strain rate and stress and temperature during high temperature deformation process. The processing maps exhibit two domains as optimum fields for hot deformation at different strains, including the high strain rate domain in 623–773 K and the low strain rate domain in 573–673 K

Keywords

Al-Cu-Mg-Ag alloy / flow stress behavior / constitutive equation / processing map

Cite this article

Download citation ▾
Sheng Yang, Danqing Yi, Hong Zhang, Sujuan Yao. Flow stress behavior and processing map of Al-Cu-Mg-Ag alloy during hot compression. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(5): 694-698 DOI:10.1007/s11595-007-5694-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang S. C., Cao F. R., Li Y. L. Continuous Extruding Extending Forming of Semi-solid A2017 Alloy[J]. Journal of Wuhan University of Technology-Materials Science, 2006, 21(1): 76-79.

[2]

Wang J., Wu X., Xia K. Creep Behavior at Elevated Temperatures of an Al-Cu-Mg-Ag Alloy[J]. Materials Science and Engineering A, 1997, 234–236: 287-290.

[3]

Kazanjian S., Wang N., Edgar A. S. Creep Behavior and Microstructural Stability of Al-Cu-Mg-Ag and Al-Cu-Li-Mg-Ag[J]. Materials Science and Engineering A, 1997, 234–236: 571-574.

[4]

Reich L., Murayama M., Hono K. Evolution of Ω Phase in an Al-Cu-mg-Ag Alloy a Three Dmimensional Atom Probe Study[J]. Acta Mater., 1998, 46(17): 6 053-6 062.

[5]

Zhan M. Y., Chen Z. H., Zhang H., . Flow Stress Behavior of Porous FVS0812 Aluminum Alloy during Hot-compression[J]. Mechanics Research Communiations, 2006, 33: 508-514.

[6]

Bozzini B., Cerri E. Numerical Reliability of Hot Working Processing Maps[J]. Materials Science and Engineering A, 2002, 328: 344-347.

[7]

Jain V. K., Jata K. V., Rioja R. J., . Processing of an Experimental Aluminum-lithium Alloy for Controlled Microstructure[ J]. Journal of Materials Processing Technology, 1998, 73: 108-118.

[8]

Zhang L. Y., Huang G. J. Hot Deformation Kinetics of Magnesium Alloy AZ31[J]. Journal of Wuhan University of Tech nology-Materials Science Edition, 2006, 21(3): 15-17.

[9]

Lyszkowski R., Bystrzycki J. Hot Deformation and Processing Maps of an Fe3Al Intermetallic Alloy[J]. Intermetallics, 2006, 14(10–11): 1 231-1 237.

[10]

Rao K. P., Doravivelu S. M., Roshan H. M., . Hot Deformation of Al-4Mg Alloy[J]. Transactions of the Indian Institute of Metals, 1983, 37(5): 471-476.

[11]

Saekar J., Prasad Y. V. R. K., Surappa M. K. Processing Maps of Al-Mg-Si Alloy[J]. Journal of Materials Science, 1995, 30(11): 2 843-2 848.

[12]

P Cavaliere. Hot and Warm Forming of 2618 Aluminum Alloy[J]. Jounal of Light Metals, 2002, (2):247–252

[13]

Sellars C. M., Tegart W. J. M. Hot Workability[J]. Int. Met. Reviews, 1972, 17: 1-24.

[14]

Prasad Y.V.R.K., Sasidhara S. Hot Working Guide: a Compendium of Processing Maps[M], 1999. Warrendale, PA: ASM. 25-157.

[15]

Prasad Y. V. R. K., Rao K. P. Processing Maps and Rate Controlling Mechanisms of Hot Deformation of Electrolytic Tough Pitch Copper in the Temperature Range 300–950 °C[J]. Materials Science and Engineering A, 2005, 391(1–2): 141-150.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/