Surface films formed on SnO2 anode in lithium secondary batteries by FTIR spectroscopy

Feng Huang , Yunhong Zhou , Hui Zhan , Xiangzhong Lu

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (5) : 662 -665.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (5) : 662 -665. DOI: 10.1007/s11595-007-5662-5
Article

Surface films formed on SnO2 anode in lithium secondary batteries by FTIR spectroscopy

Author information +
History +
PDF

Abstract

The chemical composition of the passivating layer formed on nano SnO2 anodes in 1 M LiClO4 + (ethylene carbonate)EC + (dimethyl carbonate)DMC at different charge/discharge states in lithium secondary batteries was studied using extra reflectance FTIR spectra. Results show that solvent decomposition reaction that generally occurs on the surface of carbon and alkali metal electrodes also takes place on nano-SnO2 anode, and the major constituent of the passivating layer is Li2CO3 and ROCO2Li. Formation of the passivating layer would certainly lead to the irreversible capacity loss.

Keywords

nano-SnO2 anode / lithium rechargeable batteries / FTIR / passivating layer

Cite this article

Download citation ▾
Feng Huang, Yunhong Zhou, Hui Zhan, Xiangzhong Lu. Surface films formed on SnO2 anode in lithium secondary batteries by FTIR spectroscopy. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(5): 662-665 DOI:10.1007/s11595-007-5662-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Belliard F., Connor P. A., Irvine J. T. S. Novel Tin Oxide-based Anodes for Li-ion Batteries[J]. Solid State Ionics, 2000, 135: 163-167.

[2]

Hao H., Liu H. X., Ouyang S. X. Microwave Synthesis of Cathode Material LixMn2O4 for Lithium Ion Battery[J]. Joural of Wuhan University of Technology-Mater. Sci.Ed, 2002, 17(4): 37-38.

[3]

Idota Y., Kubota T., Matsurfuji A., . Tin-Based Amorphous Oxide: A High-capacity Lithium-ion-storage[J]. Material. Sci., 1997, 276: 1 395-1 397.

[4]

Huang F., Zhan H., Zhou Y. H. Studies of Nano-sized Co3O4 as Anode Materials for Lithium-ion Batteries[J]. Chinese Journal of Chemistry, 2003, 21: 1 275-1 279.

[5]

Huang F., Yuan Z. Y., Zhan H., . Synthesis and Electrochemical Performance of Nanosized Magnesium tin Composite Oxides[J]. Materials Chemistry and Physics, 2004, 83: 16-22.

[6]

Huang F., Yuan Z.Y., Zhan H., . A Novel Tin-based Nanocomposite Oxide as Negative-electrode Materials for Li-ion Batteries[J]. Materials letters, 2003, 57: 3 341-3 342.

[7]

Courtney I. A., Dahn J. R. Electrochemical and in Situ X-ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites[J]. J. Electrochem. Soc., 1997, 144: 2 045-2 052.

[8]

Li H., Huang X. J., Chen L. Q. Direct Imaging of the Passivating Film and Microstructure of Nanometer-Scale SnO Anodes in Lithium Rechargeable Batteries[J]. Electrochem. Solid-state Lett., 1998, 1: 241-243.

[9]

Zhang S. S., Michael S. D., Xu K., . Understanding Solid Electrolyte Interface Formation on Graphite Electrodes[J]. J.Electrochem.Soc., 2001, 21: A206-A208.

[10]

Li H., Huang X. J., Chen L. Q. Electrochemical Impedance Spectroscopy Study of SnO and Nano-SnO Anodes in Lithium Rechargeable Batteries[J]. J.Power Source, 1999, 81–82: 340-345.

[11]

Retoux R., Brousse T., Schleich D. M. High-resolution Electron Microscopy Investigation of Capacity Fade in SnO2 Electrodes for Lithium-ion Batteries[J]. J.Electrochem.Soc., 1999, 146: 2 472-2 476.

[12]

Zhou X. Y., Li J., Liu H. Y., . A Novel Modification Approach for Natural Graphite Anode of Li-ion Batteries[J]. Joural of Wuhan University of Technology-Mater. Sci.Ed., 2004, 19(2): 85-89.

[13]

Li J. Z., Li H., Wang Z. X., . The Study of Surface Films Formed on SnO Anode in Lithium Rechargeable Batteries by FTIR Spectroscopy[J]. J.Power Source, 2002, 107: 1-4.

[14]

Lin K. Z., Xu i Y. H., Wang X. L., . Electrochemical Intercalation of Lithium into Raw and Mild Oxide Treated Carbon Nanotubes Prepared by CVD[J]. Joural of Wuhan University of Technology-Mater. Sci.Ed., 2004, 19(3): 21-44.

[15]

Sun J. T., Xie W., Yuan L. J., . Preparation and Luminescence Properties of Tb3+-doped Zinc Salicylates[J]. Mater. Sci. Eng., 1999, B64: 157-159.

[16]

Nyquist R. A., Kagel R. O. Infrared Spectra of Inorganic Compounds[M], 1971. New York: Academic Press.

[17]

Aurbach D., Markovsky B., Weissman I., . On the Correlation between Surface Chemistry and Performance of Graphite Negative Electrodes for Li Ion Batteries[J]. Electrochim. Acta., 1999, 45: 67-86.

[18]

Aurbach D., Zaban A., Schechter A., . The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries[J]. J.Electrochem.Soc, 1995, 142: 2 873-2 882.

[19]

Li H., Li H. S., Lu W., . Studies on Capacity Loss and Capacity Fading of Nanosized SnSb Alloy Anode for Li-ion Batteries[J]. J.Electrochem. Soc., 2001, 148: A915-A922.

[20]

Li H., Zhu G. Y., Huang X. J., . Synthesis and Electrochemical Performance of Dendrite-like Nanosized SnSb Alloy Prepared by Co-precipitation in Alcohol Solution at Low Temperature[J]. J. Mater. Chem., 2000, 10: 693-696.

[21]

Huang F. Studies on Oxides Use as Negative Electrode Materials in Lithium Secondary Batteries[D], 2003. Wuhan: Wuhan University.

[22]

Churikov A. V., Nimon E. S., Lvov A. L. Impedance of Li-Sn, Li-Cd and Li-Sn-Cd Aalloys in Propylene Carbonate Solution[J]. Electrochim. Acta., 1997, 42: 179-189.

AI Summary AI Mindmap
PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/