Effect of wet surface treated nano-SiO2 on mechanical properties of polypropylene composite

Dongbo Wang , Yujie Feng , Liwei Han , Yan Tian

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (3) : 354 -357.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (3) : 354 -357. DOI: 10.1007/s11595-007-3354-9
Article

Effect of wet surface treated nano-SiO2 on mechanical properties of polypropylene composite

Author information +
History +
PDF

Abstract

Nano-SiO2/polypropylene composite was prepared by melt-blending process. The nano-SiO2 particles were organized by wet process surface treatment with silane coupling agent KH-570. The effect of mass fraction of nano-SiO2 particles and dosage of KH-570 on the toughening and strengthening of PP matrix were investigated based on the fractography of impact notch and the analysis of crystal structure by X-ray and dispersive structure of nano-SiO2 by TEM. Results show that the impact and flexural strength and modulus of the composite are improved obviously with low loading of nano-SiO2 (3 wt%–5 wt%), and the izod impact strength of PP increases twice with 4 wt% nano-SiO2. The nano-SiO2 particles treated can disperse into the matrix resin, which has evident heterogeneous nucleation effects on the crystallization of PP. The optimal toughening and strengthening effects of PP matrix can be obtained when the content of nano-SiO2 and KH-570 are 4 wt% and 3 wt%, respectively.

Keywords

nano-SiO2 / silane coupling agent / wet process surface treatment / polypropylene / mechanical properties

Cite this article

Download citation ▾
Dongbo Wang, Yujie Feng, Liwei Han, Yan Tian. Effect of wet surface treated nano-SiO2 on mechanical properties of polypropylene composite. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(3): 354-357 DOI:10.1007/s11595-007-3354-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rahma F. Perlommce Evaluation of Synthesized Acrylic Acid Garfted Polyprolene within CaCO3/Polypropylene Composites[J]. Polymer Composites, 2000, 21(2): 175-186.

[2]

Zhang M. Q., Rong M. Z., Friedrich K. Nalwa H. S. Processing and Properties of Non-layered Nanoparticle Reinforced Thermoplastic Composites[A]. Handbook of OrganicInorganic Hybrid Materials and Nanocomposites[M], 2003. California: American Science Publishers. 113-150.

[3]

Chan C. M., Wu J. S., Li J. X., . Polypropylene/calcium Carbonate Nanocomposites [J]. Polymer, 2002, 43(10): 2 981-2 992.

[4]

Rong M. Z., Zhang M. Q., Zheng Y. X., . Irradiation Graft Polymerization on Nano-inorganic Particles: An Effective Means to Design Polymer Based Nanocomposites[J]. Journal of Materials Science Letters, 2000, 19(13): 1 159-1 161.

[5]

Rong M. Z., Zhang M. Q., Zheng Y. X., . Structure-property Relationships of Irradiation Grafted Nano-inorganic Particle Filled Polypropylene Composites[J]. Polymer, 2001, 42(1): 167-183.

[6]

Zhang M. Q., Rong M. Z., Zeng H. M., . An Atomic Forcemicroscopy Study on Structure and Properties of Irradiation Grafted Silica Particles in Polypropylene Based Nanocomposites[J]. Journal of Applied Polymer Science, 2001, 80(12): 2 218-2 227.

[7]

Jain A. K., Nagpal A. K., Singhal R. Effect of Dynamical CraSSlinking on Impact Strength and Other Mechanical Properties of Polypropylene/Ethylene-propylene-dime Rubber Blends[J]. Journal of Applied Polymer Science, 2000, 78(12): 2 089-2 103.

[8]

Liu X., Huang H., Xie Z. Y., . EPDM/Polyamide TPV Compatibilized by Chlorinated Polyethylene[J]. Polymer Testing, 2003, 22(1): 9-16.

[9]

Shang S. W., Williams J. W., Soderholm K. J. M., . Using the Bond Energy Density to Predict the Reinforcing Ability of a Composite [J]. J. Mater. Sci., 1992, 27: 4 949

[10]

Rong MZ, Zhang MQ, Zheng YX, et al. Tensile Performance Improvement of Low Nanoparticles Filled-polypropylene Composites[J]. Composites Science and Technology, 2002 (62):1 327–1 340

[11]

Zhang M.Q., Rong M.Z., Zhang H.B., . Mechanical Properties of Low Nano-silica Filled High-density Polyethylene Composites[J]. Polym. Eng. Sci., 2003, 43: 490-500.

[12]

Wang G., Chen X.Y., Huang R., . Nano-CaCO3/polypropylene Composites Made with Ultra-high-speed Mixer[J]. Mater. Sci. Lett., 2002, 21: 985-986.

[13]

Zhang M.Q., Rong M.Z., Pan S.L., . Tensile Properties of Polypropylene Filled with Nanoscale Calcium Carbonate Particles[J]. Adv. Compos. Lett., 2002, 11: 293-298.

[14]

Zhang J., Wang X., Lu L., . Preparation and Performance of High-impact Polystyrene (HIPS)/nano-TiO2 Nanocomposites[J]. J. Appl. Polym. Sci., 2003, 87: 381-385.

[15]

Xiong M.N., Wu L.M., Zhou S.X., . Preparation and Characterization of Acrylic Latex/nano-SiO2 Composites[J]. Polym. Int., 2002, 51: 693-698.

[16]

Jana S.C., Jain S. Dispersion of Nanofillers in High-performance Polymers Using Reactive Solvents as Processing Aids[J]. Polymer, 2001, 42: 6 897-6 905.

[17]

XIE Ting-xiu, LIU Hong-zhi, OU Yu-cun, et al. Effect of Interfacial Interaction on the Toughness of HDPE/POEg/CaCO3 Ternary Composites[J]. Acta Polymerica Sinica, 2006(1):53–57

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/