Composite cathode Bi1.14Sr0.43O2.14-Ag for intermediate-temperature solid oxide fuel cells

Zhan Gao , Ping Zhang , Ruifeng Gao , Jianbing Huang , Zongqiang Mao

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (3) : 350 -353.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (3) : 350 -353. DOI: 10.1007/s11595-007-3350-0
Article

Composite cathode Bi1.14Sr0.43O2.14-Ag for intermediate-temperature solid oxide fuel cells

Author information +
History +
PDF

Abstract

Composites consisting of strontium stabilized bismuth oxide (Bi1.14Sr0.43O2.14, SSB) and silver were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria electrolyte. There were no chemical reactions between the two components. The microstructure of the interfaces between composite cathodes and Ce0.8Sm0.2O1.9 (SDC) electrolytes was examined by scanning electron microscopy (SEM). Impedance spectroscopy measurements show that the performance of cathode fired at 700 °C is the best. When the content of Ag2O is 70 wt%, polarization resistance values for the SSB-Ag cathodes are as low as 0.2 Ωcm2 at 700 °C and 0.29 Ωcm2 at 650 °C. These results are much smaller than some of other reported composite cathodes on doped ceria electrolyte and indicate that SSB-Ag composite is a potential cathode material for intermediate temperature SOFCs.

Keywords

solid oxide fuel cells (SOFCs) / composite cathode / strontium stabilized bismuth oxide (SSB) / samaria doped ceria (SDC)

Cite this article

Download citation ▾
Zhan Gao, Ping Zhang, Ruifeng Gao, Jianbing Huang, Zongqiang Mao. Composite cathode Bi1.14Sr0.43O2.14-Ag for intermediate-temperature solid oxide fuel cells. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(3): 350-353 DOI:10.1007/s11595-007-3350-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiang S. P., Leng Y. J., Chan S. H., . Development of (La, Sr)MnO3-based Cathodes for Intermediate Temperature Solid Oxide Fuel Cells[J]. Electrochem. Solid State Lett., 2003, 6(4): A67-A70.

[2]

Minh N. Q. Ceramic Fuel Cells[J]. J. Am. Ceram. Soc., 1993, 76(3): 563-588.

[3]

Steele B. C. H. Appraisal of Ce1−yGdyO2−y/2 Electrolytes for IT-SOFC Operation at 500 Degrees C[J]. Solid State Ionics, 2000, 129(1–4): 95-110.

[4]

Sammes N. M., Tompsett G. A., Nafe H., . Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity[J]. J. European Ceram. Soc., 1999, 19(10): 1 801-1 826.

[5]

Boivin J. C., Mairesse G. Recent Material Developments in Fast Oxide Ion Conductors[J]. Chem. Mat., 1998, 10(10): 2 870-2 888.

[6]

Xia C. R., Zhang Y., Liu M. L. Composite Cathode Based on Yttria Stabilized Bismuth Oxide for Low-temperature Solid Oxide Fuel Cells[J]. Appl. Phys. Lett., 2003, 82(6): 901-903.

[7]

Zhang J. D., Ji Y., Gao H. B., . Composite Cathode La0.6Sr0.4Co0.2Fe0.8O3-Sm0.1Ce0.9O1.95-Ag for Intermediatetemperature Solid Oxide Fuel Cells[J]. J. Alloy. Compd., 2005, 395(1–2): 322-325.

[8]

Hwang H. J., Moon J. W., Moon J. Removal of Nitric Oxide (NO) by Perovskite-type Composite Catalytic Thick Film, La0.6Sr0.4Co0.2Fe0.8O3-delta and Gadolinia-doped Ceria Electrolyte Gd0.2Ce0.8O2-delta[J]. J. Am. Ceram. Soc., 2005, 88(1): 79-84.

[9]

Hwang H. J., Ji-Woong M., Seunghun L. Electrochemical Performance of LSCF-based Composite Cathodes for Intermediate Temperature SOFCs[J]. J. Power Sources, 2005, 145(2): 243-248.

[10]

Shao Z. P., Haile S. M. A High Performance Cathode for the Next Generation of Solid Oxide Fuel Cells[J]. Nature, 2004, 431(7005): 170-173.

[11]

Xu X. Y., Xia C. R., Mao G. L., . Fabrication and Performance of Functionally Graded Cathodes for IT-SOFCs Based on Doped Ceria Electrolytes[J]. Solid State Ionics, 2005, 176(17–18): 1 513-1 520.

[12]

Dusastre V., Kilner J. A. Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications[J]. Solid State Ionics, 1999, 126(1–2): 163-174.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/