Electrophoretic coating of Hydroxyapatite on pyrolytic carbon using glycol as dispersion medium

Lin Gao, Jiarui Lin

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (3) : 293-297.

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (3) : 293-297. DOI: 10.1007/s11595-007-3293-5
Article

Electrophoretic coating of Hydroxyapatite on pyrolytic carbon using glycol as dispersion medium

Author information +
History +

Abstract

Hydroxyapatite (HA) coatings on pyrolytic carbon were produced via electrophoretic deposition (EPD) using glycol and ethanol as dispersion medium respectively. The effect of the solubility of HA in the dispersion medium on crack occurrence and adherence of the coating was investigated by means of scanning electronic microscope (SEM) and atomic absorption spectrometer (AAS). The results show that the solubility of HA in glycol is higher than that in ethanol. The usage of glycol as a dispersion medium can reduce the possibility of crack formation and enhance the adhesive strength between the coating and the carbon substrate. The green coatings can be sintered under vacuum at 1 000 °C whether the coatings are obtained using ethanol or glycol as dispersion medium. No HA decomposition was observed up to 1 000 °C by vacuum sintering by X-ray diffraction (XRD) analysis.

Keywords

hydroxyapatite / electrophoretic deposition / coatings / dispersion medium / glycol

Cite this article

Download citation ▾
Lin Gao, Jiarui Lin. Electrophoretic coating of Hydroxyapatite on pyrolytic carbon using glycol as dispersion medium. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(3): 293‒297 https://doi.org/10.1007/s11595-007-3293-5

References

[1]
Jenkins G. M. Biomedical Applications of Carbon Fiber Reinforced Carbon in Implanted Prostheses[J]. Carbon, 1977, 15(1): 33-37.
CrossRef Google scholar
[2]
Fitzer E. The Future of Carbon-Carbon Composites[J]. Carbon, 1987, 25(2): 163-190.
CrossRef Google scholar
[3]
Gott V. L., Alejo D. E., Cameron D. E. Mechanical Heart Valves: 50 Years of Evolution[J]. Ann Thorac Surg., 2003, 76(suppl): S2 230-S2 239.
[4]
Cook S. D., Beckenbaugh R. D., Redondo J., . Longterm Follow-up of Pyrolytic Carbon Metacarpophalangeal Implants[J]. J. Bone Joint Surg. Am., 1999, 81(5): 635-648.
[5]
Hormel K., Beckenbaugh R. Preliminary Report of Total Joint Replacement of the PIP Joint with a Pyrolytic Carbon Implant[J]. Orthopedics, 2003, 26(12Suppl): s1 290-s1 296.
[6]
Louis J. P., Dabadie M. Fibrous Carbon Implants for the Maintenance of Bone Volume after Tooth Avulsion:First Clinical Results[J]. Biomaterials, 1990, 11(9): 525-528.
CrossRef Google scholar
[7]
Pesakova V., Klezl Z., Balik K., . Biomechanical and Biological Properties of the Implant Material Carbon-Carbon Composite Covered with Pyrolytic Carbon[J]. J. Mater. Sci., Mater. Med., 2000, 11(12): 793-798.
CrossRef Google scholar
[8]
Lavernia C., Schoenung J. M. Calcium Phosphate Ceramics as Bone Substitutes[J]. Am. Ceram. Soc. Bull., 1991, 70(1): 95-100.
[9]
Hench L. L. Bioceramics, A Clinical Success[J]. Am. Ceram. Soc. Bull., 1998, 77(7): 67-74.
[10]
Ducheyne P., Raemdonck W. V., Heughebaert J. C., . Structural Analysis of Hydroxyapatite Coatings on Titanium[J]. Biomaterials, 1986, 7(2): 97-103.
CrossRef Google scholar
[11]
Ducheyne P., Radin S., Heughebaert M., . Calcium Phosphate Ceramic Coatings on Porous Titanium: Effect of Structure and Composition on Electrophoretic Deposition, Vacuum Sintering and in Vitro Dissolution[J]. Biomaterials, 1990, 11(4): 244-254.
CrossRef Google scholar
[12]
Wei M., Ruys A. J., Swain M. V., . Interfacial Bond Strength of Electrophoretically Deposited Hydroxyapatite Coatings on Metals[J]. J. Mater. Sci., Mater. Med., 1999, 10(7): 401-409.
CrossRef Google scholar
[13]
Hamagami J., Ato Y., Kanamura K. Fabrication of Highly Ordered Macroporous Apatite Coating onto Titanium by Electrophoretic Deposition Method[J]. Solid State Ionics, 2004, 172(1–4): 331-334.
CrossRef Google scholar
[14]
Wang C., Ma J., Cheng W., . Thick Hydroxyapatite Coatings by Electrophoretic Deposition[J]. Mater. Lett., 2002, 57(1): 99-105.
CrossRef Google scholar
[15]
Zhitomirsky I. Electrophoretic and Electrolytic Deposition of Ceramic Coatings on Carbon Fibers[J]. J. Eur. Ceram. Soc., 1998, 18(7): 849-856.
CrossRef Google scholar
[16]
Zhitomirsky I. Electrophoretic Hydroxyapatite Coatings and Fibers[J]. Mater. Lett., 2000, 42(4): 262-271.
CrossRef Google scholar
[17]
Ma J., Wang C., Peng K. W. Electrophoretic Deposition of Porous Hydroxyapatite Scaffold[J]. Biomaterials, 2003, 24(20): 3 505-3 510.
CrossRef Google scholar
[18]
Wei M., Ruys A. J., Milthorpe B. K., . Electrophoretic Deposition of Hydroxyapatite Coatings on Metal Substrates: A Nanoparticulate Dual-coating Approach[J]. J. Sol-gel Sci. Tech., 2001, 21(1–2): 39-48.
CrossRef Google scholar
[19]
Mondragon-Cortez P., Vargas-Gutierrez G. Electrophoretic Deposition of Hydroxyapatite Submicron Particles at High Voltages[J]. Mater. Lett., 2004, 58(7–8): 1 336-1 339.
[20]
Stoch A., Brozek A., Kmita G., . Electrophoretic Coating of Hydroxyapatite on Titanium Implants[J]. J. Mol. Str., 2001, 596(1): 191-200.
CrossRef Google scholar
[21]
Xiao X. F., Liu R. F. Effect of Suspension Stability on Electrophoretic Deposition of Hydroxyapatite Coatings[J]. Mater. Lett., 2006, 60(21–22): 2 627-2 632.
[22]
Linder F., Feltz A. Electrophoretic Deposition-A Method for Preparation of Semiconducting Oxide Ceramic Layers[J]. Solid States Ionics, 1993, 63–65: 13-17.
CrossRef Google scholar
[23]
Kwon S., Messing G. L. The Effect of Particle Solubility on the Strength of Nanocrystalline Agglomerates: Boehmite[J]. NanoStru. Mater., 1997, 8(4): 399-418.
CrossRef Google scholar
[24]
Maskara A., Smith D. M. Agglomeration during the Drying of Fine Silica Powders, Part II: The Role of Particle Solubility[J]. J. Am. Ceram. Soc., 1997, 80(7): 1 715-1 722.

Accesses

Citations

Detail

Sections
Recommended

/