Effects of phosphorus additions on microwave sintering properties of ultrafine WC-10Co cemented carbides

Feng Quan , Jian Zhou , Weibo Liu , Guizhen Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (4) : 725 -727.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (4) : 725 -727. DOI: 10.1007/s11595-006-4725-3
Article

Effects of phosphorus additions on microwave sintering properties of ultrafine WC-10Co cemented carbides

Author information +
History +
PDF

Abstract

Using the microwave sintering technology, the effects of phosphorus (P) additions on the microstructure and properties of the ultrafine WC-10Co alloys were investigated. The experimental results show that with only 0.3wt% P additions, full density WC-10Co cermets were obtained at temperature of 1250 °C, which is 70 °C lower than that of the undoped counterparts. Lower sintering temperature can result in finer WC grain growth; therefore, the P-doped WC-10Co alloys exhibited higher hardness than the undoped ones. But at the same time, P doping could lead to sacrifice of fracture toughness of WC-10Co cemented carbides.

Keywords

microwave sintering / cemented carbides / ultrafine hardmetals / phosphorus / grain growth inhibitor

Cite this article

Download citation ▾
Feng Quan, Jian Zhou, Weibo Liu, Guizhen Liu. Effects of phosphorus additions on microwave sintering properties of ultrafine WC-10Co cemented carbides. Journal of Wuhan University of Technology Materials Science Edition, 2007, 22(4): 725-727 DOI:10.1007/s11595-006-4725-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brevl E., cheng J. P., Agrawal D. K., Gigl P., Dennis M., Roy R., Papworth A. J. Comparision between Microwave and Conventional Sintering of WC/Co Composites[J]. Materials Science and Engineering A, 2005, 391(1–2): 285-295.

[2]

Berger S., Porat R., Rosen R. Nanocrystaline Materials: A Study of WC-based Hard metals[J]. Progress in Materials Science, 1997, 42(1–4): 311-320.

[3]

Kear B.H., Colaizzi J., Mayo W. E., Liao S. C. On the Processing of Nanocrystalline and Nanocomposite Ceramics[J]. Scripta Materialia, 2001, 44(8–9): 2065-2068.

[4]

Da Silva A. G. P., De Souza C. P., Gomes U. U., Medeiros F. F. P., Ciaravino C., Roubin M. A low Temperature Synthesized NbC as Grain Growth Inhibitor for WC-Co Composites[J]. Materials Science and Engineering A, 2000, 293(1–2): 242-246.

[5]

Upadhyaya G. S. Some Issues in Sintering Science and Technology[J]. Materials Chemistry and Physics, 2001, 67(1–3): 1-5.

[6]

Zhou J., Cheng J., Mei B., Fu W. Research on Microwave Sintering Alumina Ceramics[J]. Journal of Wuhan University of Technology-Materials Science Edit, 1998, 13(3): 34-38.

[7]

Hsieh C.-Y., Lin C.-N., Chung S.-L., Cheng J., Agrawal D. K. Microwave Sintering of AlN Powder Synthesized by a SHS Method[J]. Journal of the European Ceramic Society, 2007, 27(1): 343-350.

[8]

Agrawal D., cheng J., Seegopaul P., Gao L. Grain Growth Control in Microwave Sintering of Ultrafine WC-Co Composite Powder Compacts[J]. Powder Metallurgy, 2000, 43(1): 15-16.

[9]

Saitou K. Microwave Sintering of Iron, Cobalt, Nickel, Copper and Stainless Steel Powders[J]. Scripta Materialia, 2006, 54(5): 875-879.

[10]

Shetty D. K., Wright I. G., Mincer P. N., Clauer A. H. Indentation Fracture of WC-Co Cermets[J]. Journal of Materials Science, 1985, 20(5): 1873-1882.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/