Preparation and characterization of a novel PDLLA/Chondroitin sulfate/chitosan asymmetry film

Yuhua Yan , Haixing Xu , Tao Wan , Shipu Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (4) : 681 -685.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (4) : 681 -685. DOI: 10.1007/s11595-006-4681-y
Article

Preparation and characterization of a novel PDLLA/Chondroitin sulfate/chitosan asymmetry film

Author information +
History +
PDF

Abstract

A novel bioactive and bioresorbable asymmetry film was prepared. The PDLLA membrane was activated by 1, 6-hexanediamine to obtain a stable positive charge surface. Chondroitin sulfate and chitosan were then deposited on activated PDLLA membrane via layer-by-layer (LBL) electro-static assembly (ESA) technique. The deposition process was monitored by UV-Vis absorbance spectroscopy. The composite membrane was frozen lyophilized to form the asymmetry film and characterized by attenuated total reflection (ATR)-FT-IR, XPS and SEM. The experimental results show that a stable 1, 6-hexanediamine layer on PDLLA substrate based on the aminolysis of the polyester and the layer thickness increase linearly first with the increase of the deposited layers, and then increases slowly due to the layer interpenetration. The test results of ATR-FT-IR and SEM show the asymmetry film is modified uniformly with a dense inner layer and a porous sponge outer layer.

Keywords

PDLLA / Chondroitin sulfate / chitosan / asymmetry film

Cite this article

Download citation ▾
Yuhua Yan, Haixing Xu, Tao Wan, Shipu Li. Preparation and characterization of a novel PDLLA/Chondroitin sulfate/chitosan asymmetry film. Journal of Wuhan University of Technology Materials Science Edition, 2007, 22(4): 681-685 DOI:10.1007/s11595-006-4681-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen P. R., Chen M. H., Lin F. H., . Release Characteristics and Bioactivity of Gelatin-tricalcium Phosphate Membranes Covalently Immobilized with Nerve Growth Factors[J]. Biomaterials, 2005, 26: 6579-6587.

[2]

Stang F., Fansa H., Wolf G., . Structural Parameters of Collagen Nerve Grafts Influence Peripheral Nerve Regeneration[J]. Biomaterials, 2005, 26(16): 3083-3091.

[3]

Haile Y., Haastert K., Cesnulevicius K., . Culturing of Glial and Neuronal Cells on Polysialic Acid[J]. Biomaterials, 2007, 28(6): 1163-1173.

[4]

Pfister B. J., Iwata A., Taylor A. G., . Development of Transplantable Nervous Tissue Constructs Comprised of Stretch-grown Axons[J]. Journal of Neuroscience Methods, 2006, 153(1): 95-103.

[5]

Johnson E. O., Zoubos A. B., Soucacos P. N. Regeneration and Repair of Peripheral Nerves[J]. Injury (Supp. 1), 2005, 36(4): S24-S29.

[6]

Lee D. Y., Choi B. H., Park J. H., . Nerve Regeneration with the Use of a Poly(L-lactide-co-glycolic acid)-Coated Collagen Tube Filled with Collagen Gel[J]. Journal of Cranio-Maxillofacial Surgery, 2006, 34(1): 50-56.

[7]

Caissie R., Landry P. E., Jacques L., . Evaluation of Nerve Regeneration across a Peripheral Nerve Gap Using a Collagen Nerve Conduit Filled with a Collagen-Based Biomaterial Associated with Different Neurotrophins-Preliminary Results[J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2006, 101(1): 43-44.

[8]

Bukalo O., Schachner M., Dityatev A. Modification of Extracellular Matrix by Enzymatic Removal of Chondroitin Sulfate and by Lack of Tenascin-R Differentially Affects Several Forms of Synaptic ‘Plasticity in the Hippocampus[J]. Neuroscience, 2001, 104(2): 359-369.

[9]

Barkalow F. J., Schwarzbauer J. E. Interactions between Fibronectin and Chondroitin Sulfate Are Modulated by Molecular Context[J]. Journal of Biological Chemistry, 1994, 269: 3957-3962.

[10]

Bali J. P., Cousse H., Neuzil E. S. Biochemical Basis of the Pharmacologic Action of Chondroitin Sulfates on the Osteoarticular System[J]. Seminars in Arthritis and Rheumatism, 2001, 31: 58-68.

[11]

Suh J. K., Matthew H. W. Application of Chitosan-based Polysaccharide Biomaterials in Cartilage Tissue Engineering: a Review[J]. Biomaterials, 2000, 21(24): 2589-2598.

[12]

Shanmugasundaram N., Ravichandran P., Reddy P. N., . Collagen-Chitosan Polymeric Scaffolds for the in Vitro Culture of Human Epidermoid Carcinoma Cells[J]. Biomaterials, 2001, 22(14): 1943-1951.

[13]

Muzzarelli R. A., Mattioli-Belmonte M., Tietz C., . Stimulatory Effect on Bone Formation Exerted by a Modified Chitosan[J]. Biomaterials, 1994, 15: 1075-1081.

[14]

Shanmugasundaram N., Ravichandran P., Reddy P.N., . Collagen-Chitosan Polymeric Scaffolds for the in Vitro Culture of Human Eepidermoid Carcinoma Cells[J]. Biomaterials, 2001, 22: 1943-1951.

[15]

Zhu H. G., Ji J., Shen J. C. Osteoblast Growth Promotion by Protein Electrostatic Self-Assembly on Biodegradable Poly (lactide)[J]. J.Biomater.Sci.Polymer Edn., 2005, 16(6): 761-774.

[16]

Mao Z. W., Ma L., Zhou J., . Bioactive Thin Film of Acidic Fibroblast Growth Factor Fabricated by Layer-by-Layer Assembly[J]. Bioconjugate Chem., 2005, 16(5): 1316-1322.

[17]

Fu J. H., Ji J., Yuan W. Y., . Construction of Anti-adhesive and Antibacterial Multilayer Films via Layer-by-Layer Assembly of Heparin and Chitosan[J]. Biomaterials, 2005, 26(33): 6684-6692.

[18]

Liu Y. X., He T., Gao C. Y. Surface Modification of Poly (ethylene terephthalate) via Hydrolysis and Layer-by-Layer Assembly of Chitosan and Chondroitin Sulfate to Construct Cytocompatible Layer for Human Endothelial Cells[J]. Colloids and Surf B Biointerfaces, 2005, 46(2): 117-126.

[19]

Ren K. F., Ji J., Shen J. C. Construction of Polycation Based on-viral DNA Nanoparticledand Polyanion Multilayers via Layerby-Layer Self-Assembly[J]. Macromol. Rapid Commun., 2005, 26(20): 1633-1638.

[20]

Zhu Y. B., Gao C., Liu Y. X., . LBL Self-Assembly of Chondroitin Sulfate and Collagen onto Poly (L-lactic acid) for Improving Its Cytocompatibilityu with Endothelial Cells[J]. Chem.J.Chinese University, 2004, 25(7): 1347-1350.

[21]

Chang C. J., Hsu S. H. The Effect of High Outflow Permeability in Asymmetric Poly (DL-lactic acid-co-glycolic acid) Conduits for Peripheral Nerve Regeneration[J]. Biomaterials, 2006, 27(7): 1035-1042.

[22]

Li Q. F., Xu J. H., Luo M., Gan J. L. Experimental Study on Peripheral Nerve Regeneration through Composite Biomembrane-Chitosan Conduits with Different Permeabilities[J]. Shanghai Medicine, 2000, 23(7): 390-392.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/