High efficiency synthesis of isotactic polypropylene and linear polyethylene using a new C2-symmetric carbon-bridged zirconocene catalyst

Zhengzai Cheng , Junquan Sun , Yujing Nie , Bin Mu , Shansheng Xu , Baiquan Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (4) : 667 -672.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (4) : 667 -672. DOI: 10.1007/s11595-006-4667-9
Article

High efficiency synthesis of isotactic polypropylene and linear polyethylene using a new C2-symmetric carbon-bridged zirconocene catalyst

Author information +
History +
PDF

Abstract

Ansa-Cyclohexyl-bis(4,5,6,7-tertrahydro-1-indenyl) zirconium dichloride (5) was used as catalyst for propylene and ethylene polymerization together with methyl aluminoxane (MAO) as the cocatalyst. Isotactic polypropylene (PP) was obtained with the highest activity of 6.37×107g PP (molZr)−1h−1. The meso-meso (mmmmm) pentads sequence content of PP was determined by 13C NMR spectroscopy. The dependence of the microstructure on the reaction temperature and the Al/Zr molar ratio was examined and the catalytic activity of complex 5 was compared with that of the similar ansa-zirconocene 3. The high activity of the new zirconocene 5 for propylene isospectic polymerization at high temperature (60 °C) is the result of its unique bridged-group structure. Complex 5/MAO displays also high catalytic activity of 0.46×106 to 9.87×106g PE(molZr)−1h−1 in the homo-polymerization of ethylene. The visometric molecular weight of PE ranges from 0.97×104 to 11.16×104 g·mol−1 under the given conditions.13C NMR spectroscopy analysis proves the PE to be linear polyethylene (LPE).

Keywords

ansa-zirconocene / propylene polymerization / isotactic polypropylene / ethylene polymerization

Cite this article

Download citation ▾
Zhengzai Cheng, Junquan Sun, Yujing Nie, Bin Mu, Shansheng Xu, Baiquan Wang. High efficiency synthesis of isotactic polypropylene and linear polyethylene using a new C2-symmetric carbon-bridged zirconocene catalyst. Journal of Wuhan University of Technology Materials Science Edition, 2007, 22(4): 667-672 DOI:10.1007/s11595-006-4667-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ewen J. A. Mechanisms of Stereochemical Control in Propylene Polymerizations with Soluble Group 4B Metallocene/Methylalumoxane Catalysts[J]. J. Am. Chem. Soc., 1984, 106(21): 6355-6364.

[2]

Steinhorst A., Erker G., Grehl M., . Group 4 ansa-metallocene Ziegler Catalysts Derived from Trans-1,2-Cycloalkylenebis(indenyl)-and Bis(tetrahydroindenyl)MCl2 Systems: Structural and Reactivity Studies[J]. J. Organomet. Chem., 1997, 542: 191-204.

[3]

Xu S. S., Deng X. B., Wang B. Q., . Ethylene Polymerization with Cycloalkylidene-Bridged Cyclopentadienyl Metallocene Catalysts[J]. Macromol. Rapid Commun, 2001, 22(9): 708-709.

[4]

Person D. S., Fetters L. J., Younghouse L. B., . Rheological Properties of Poly(1,3-dimethyl-1-butenylene) and Model Atactic Polypropylene[J]. Macromolecules, 1988, 21(2): 478-484.

[5]

Francis P. S., Cooke R. C., Elliott J. H. Fractionation of Polyethylene[J]. J. Polym. Sci., 1958, 31(123): 453-466.

[6]

Randall J. C. The Identify of the Amyl Branch in Low-density Polyethylenes[J]. J. Appl. Polym. Sci., 1978, 22(2): 585-588.

[7]

Axelson D. E., Levy G. C., Mandelkern L. A Quantitative Analysis of Low-Density (Branched) Polyethylenes by Carbon-13 Fourier Transform Nuclear Magnetic Resonance at 67.9 MHz[J]. Macromolecules, 1979, 12(1): 41-52.

[8]

Ikeda H., Monoi T., Sasaki Y. Performance of the Cr[CH(SiMe3)2]3/SiO2 Catalyst for Ethylene Polymerization Compared with the Performance of the Phillips Catalyst[J]. J. Polym. Sci., Part A: Polym. Chem., 2003, 41(3): 413-419.

[9]

Bochann M., Lancaster S. Base-free Cationic Zirconium Benzyl Complexes as Highly Active Polymerization Catalysts[J]. Organometallics, 1993, 12(3): 633-640.

[10]

Inoue Y., Itabshi Y., Chüjo R., . Studies of the Stereospecific Polymerization Mechanism of Propylene by a Modified Ziegler-Natta Catalyst on 125 MHz 13C NMR Spectra[J]. Polymer, 1984, 25: 1640-1644.

[11]

Erker G., Nolte R., Tsay Y. H., . Double Stereodifferentiation in the Formation of Isotactic Polypropylene at Chiral (C5H4CHMePh)2ZrC12 /Methylalumoxane Catalysts[J]. Angew. Chem. Int. Ed. Engl., 1989, 28(5): 628-629.

[12]

Busico V., Cipullo R. Microstructure of Polypropylene[J]. Prog. Polym. Sci., 2001, 26: 443-533.

[13]

Busico V., Brita D., Caporaso L., . Interfering Effects of Growing Chain Epimerization on Metallocene-Catalyzed Isotactic Propylene Polymerization[J]. Macromolecules, 1997, 30(14): 3971-3977.

[14]

Brintzinger H. H., Fischer D., Mülhaupt R., . Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts. Angew[J]. Chem. Int. Ed. Engl., 1995, 34(11): 1143-1170.

[15]

Resconi L., Cavallo L., Fait A., . Selectivity in Propylene Polymerization with Metallocene Catalysts[J]. Chem. Rev., 2000, 100(4): 1253-1346.

[16]

Ushioda T., Green M. L. H., Haggitt J., . Synthesis and Catalytic Properties of Ansa-binuclear Metallocenes of the Group IV Transition Metals[J]. J. Organomet. Chem., 1996, 518: 155-166.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/