Dynamic recrystallization behaviour of Nb-Ti microalloyed steels

Liqiang Ma , Zhenyu Liu , Sihai Jiao , Xiangqian Yuan , Di Wu

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (4) : 551 -557.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (4) : 551 -557. DOI: 10.1007/s11595-006-4551-7
Article

Dynamic recrystallization behaviour of Nb-Ti microalloyed steels

Author information +
History +
PDF

Abstract

The dynamic recrystallization (DRX) behavior of Nb-Ti microalloyed steels was investigated by isothermal single compression tests in the temperature range of 900–1 150 °C at constant strain rates of 0.1–5 s−1. DRX was retarded effectively at low temperature due to the onset of dynamic precipitation of Nb and Ti carbonitrides, resulting in higher values of the peak strain. An expression was developed for the activation energy of deformation as a function of the contents of Nb and Ti in solution as well as other alloying elements. A new value of corrective factor was determined and applied to quantify the retardation produced by increase in the amount of Nb and Ti dissolved at the reheating temperature. The ratio of critical strain to peak strain decreases with increasing equivalent Nb content. In addition, the effects of Ti content and deformation conditions on DRX kinetics and steady state grain size were determined. Finally, the kinetics of dynamic precipitation was determined and effect of dynamic precipitation on the onset of DRX was clarified based on the comparison between precipitate pinning force and recrystallization driving force.

Keywords

Nb-Ti microalloyed steels / dynamic recrystallization / activation energy of deformation / dynamic precipitation

Cite this article

Download citation ▾
Liqiang Ma, Zhenyu Liu, Sihai Jiao, Xiangqian Yuan, Di Wu. Dynamic recrystallization behaviour of Nb-Ti microalloyed steels. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(4): 551-557 DOI:10.1007/s11595-006-4551-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cho S. H., Kang K. B., Jonas J. J., . Mathematical Modeling of the Recrystallization Kinetics of Nb Microalloyed Steels[J]. ISIJ Int., 2001, 41(7): 766-773.

[2]

Medina S. F., Hernandez C. A. The Influence of Chemical Composition on Peak Strain of Deformed Austenite in Low Alloy and Microalloyed Steels[J]. Acta mater., 1996, 44(1): 149-154.

[3]

Zhang P., Du Y. H., Liu H. W., . Effect of Interface on Mechanical Property of Steel-mushy Al-20Sn Bonding Plate[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2006, 21(1): 60-62.

[4]

Yang M., Huang C. K., Wang J. H. Charactersitics of Stress-strain Curve of High Strength Steel Fiber Reinforced Concrete under Uniaxial Tension[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2006, 21(3): 132-137.

[5]

Fernández A. I., Uranga P., López B., . Dynamic Recrystallization Behavior Covering a Wide Austenite Grain Size Range in Nb and Nb-Ti Microalloyed Steels[J]. Mater. Sci. Eng. A., 2003, 361(1–2): 367-376.

[6]

Cho S. H., Kang K. B., Jonas J. J. The Dynamic, Static and Metadynamic Recrystallization of a Nb-microalloyed Steel[J]. ISIJ Int, 2001, 41(1): 63-69.

[7]

Siciliano F. Jr, Jonas J. J. Mathematical Modeling of the Hot Strip Rolling of Microalloyed Nb, Multiply-alloyed Cr-Mo, and Plain C-Mn Steels[J]. Metall. Trans. A, 2000, 31A(2): 511-530.

[8]

Zou H. L., Kirkaldy J. S. Thernodynamic Calculation and Experimental Verification of the Carbonitride-austenite Equilibrium in Ti-Nb Microalloyed Steels[J]. Metall. Trans. A, 1992, 23A(2): 651-657.

[9]

Sellars C. M., Tegart W. J. M. Relationship Between Strength and Structure in Deformation at Elevated Temperatures[J]. Mem. Sci. Rev. Met, 1966, 63(9): 731-745.

[10]

Uvira J. L., Jonas J. J. Hot Compression of Armco Irion and Silicon Steel[J]. Trans. Metall. Soc. AIME, 1968, 242(8): 1619-1626.

[11]

Stewart G. R., Jonas J. J. Kinetics and Critical Conditions for the Initiation of Dynamic Recrystallization in 304 Stainless Steel[J]. ISIJ Int, 2004, 44(1): 1581-1589.

[12]

Medina S. F., Hernandez C. A. The Influence of Chemical Composition on Peak Strain of Deformation Austenite in Low Alloy and Microalloyed Steels[J]. Acta Mater., 1996, 44(1): 137-148.

[13]

Akben M. G., Weiss I., Jonas J. J. Dynamic Precipitation and Solute Hardening in a V Microalloyed Steel and Two Nb Steels Containing Higher Levels of Mn[J]. Acta Metal., 1981, 29(1): 111-121.

[14]

Akben M. G., Chandra T., Plassiard P., . Dynamic Precipitation and Solute Hardening in a Titanium Microalloyed Steel Containing Three Levels of Manganese[J]. Acta Metal., 1984, 32(4): 591-601.

[15]

Sellars C. M. Sellars C. M., Davies G. J. Proceedings of the International Conference on Hot Working and Forming Processes[C], 1980. London: Metals Society. 3-5.

[16]

Poliak E. I., Jonas J. J. A One-parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization[J]. Acta Metall., 1996, 44(1): 127-136.

[17]

Ryan N. D., McQueen H. J. Dynamic Softening Mechanisms in 304 Austenitic Stainless Steel[J]. Can. Metall. Q., 1990, 29(2): 147-162.

[18]

Dutta B., Palmiere E. J., Sellars C. M. Modeling the Kinetics of Strain Induced Precipitation in Nb Microalloyed Steels[J]. Acta Mater., 2001, 49(5): 785-794.

[19]

Okaguchi S., Hashimoto. Computer Model for Prediction of Carbonitride Precipitation during Hot Working in Nb-Ti Bearing HSLA Steels[J]. ISIJ Int., 1992, 32(3): 283-290.

[20]

Hansen S. S., Vander sande J. B., Morris C. Niobium Carbonitride Precipitation and Austenite Recystalization in Hot Rolled Microalloyed Steels[J]. Metall. Trans A, 1980, 11A(3): 387-402.

[21]

R W Chan. Recrystallization, Grain Growth and Texture[M]. ASM, Metals Park, OH Publishing, 1966, 99–100

[22]

Frost H. J., Ashby M. F. Deformation-mechanism Maps[M], 1982. Oxford: Pergamon Press. 121-125.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/