Preparation of conducting poly N-methylaniline microsphere and its antibacterial performance to sulfate reducing bacteria

Hongfang Liu , Li Huang , Zhuo Huang , Gongtai Qi , Sanada Kei , Harima Yutaka

Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (4) : 536 -540.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2008, Vol. 23 ›› Issue (4) : 536 -540. DOI: 10.1007/s11595-006-4536-6
Article

Preparation of conducting poly N-methylaniline microsphere and its antibacterial performance to sulfate reducing bacteria

Author information +
History +
PDF

Abstract

Microspheres of conducting polymers poly N-methylaniline (PNMA) were successfully synthesized through oxidation of N-methylaniline without any template. The average diameter of the microspheres with a smooth surface was about 0.40 μm when 0.2 M N-methylaniline was oxidized with 0.2 M ammonium persulfate in 0.2 M of HClO4 solution. The size of microspheres can be controlled by changing reaction time and temperature. The acid concentration was critical for the formation of microspheres with smooth surfaces. The excellent antibacterial performance of PNMA in novolac epoxy coating to sulfate reducing bacteria was demonstrated. Moreover, in API media, PNMA inhibited growth of SRB and then reduced the corrosion rate of carbon steel remarkably.

Keywords

microspheres / conducting polymer / chemical polymerization / morphology / sulfate reducing bacteria / corrosion

Cite this article

Download citation ▾
Hongfang Liu, Li Huang, Zhuo Huang, Gongtai Qi, Sanada Kei, Harima Yutaka. Preparation of conducting poly N-methylaniline microsphere and its antibacterial performance to sulfate reducing bacteria. Journal of Wuhan University of Technology Materials Science Edition, 2008, 23(4): 536-540 DOI:10.1007/s11595-006-4536-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vivier V., Cachet-Vivier C., Michel D., . Voltammetry of Chemically Made Polyaniline Powder with Cavity Microelectrode Technique[J]. Synth. Met., 2002, 126(2–3): 253-262.

[2]

Huang J., Virji S., Weiller B. H., . Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors[J]. J. Am. Chem. Soc., 2003, 125(2): 314-315.

[3]

Chao D., Chen J., Lu X., . SEM Study of the Morphology of High Molecular Weight Polyaniline[J]. Synth. Met., 2005, 150(1): 47-51.

[4]

Ishizu K., Tanaka H., Saito R. Microsphere Synthesis of Polypyrrole by Oxidation Polymerization[J]. Polymer, 1996, 37(5): 863-867.

[5]

Jang J., Oh J. H., Stucky G. D. Fabrication of Ultrafine Conducting Polymer and Graphite Nanoparticles[J]. Angew. Chem. Int. Ed., 2002, 41(21): 4016-4019.

[6]

Yan F., Xue G. Synthesis and Characterization of Electrically Conducting Polyaniline in Water-oil Microemulsion[J]. J. Mater. Chem., 1999, 9(12): 3035-3039.

[7]

Stejskal J., Kratochvil P., Armes S. P., . Polyaniline Dispersions & Stabilization by Colloidal Silica Particles[J]. Macromolecules, 1996, 29(21): 6814-6819.

[8]

Zhang L., Wan M. Self-assembly of Polyaniline-from Nanotubes to Hollow Microspheres[J]. Adv. Funct. Mater., 2003, 13(10): 815-820.

[9]

Wei Z., Wan M. Hollow Microspheres of Polyaniline Synthesized with an Aniline Emulsion Template[J]. Adv. Mater., 2002, 14(18): 1314-1317.

[10]

Shi N., Guo X., Jiang H., . Antibacterial Effect of the Conducting Polyaniline[J]. J. Mater. Sci. Technol., 2006, 22(3): 289-290.

[11]

Seshadri D. T., Bhat N. V. Synthesis and Properties of Cotton Fabrics Modified with Polypyrrole[J]. Indian J. Fibre &Textile Res., 2005, 30(2): 207-210.

[12]

Mandic Z., Duic L., Kovacicek F. The Influence of Counter-ions on Nucleation and Growth of Electrochemically Synthesized Polyaniline Film[J]. Electrochim. Acta, 1997, 42(9): 1389-1402.

[13]

Yano J., Takamura F., Masaoka K., . Morphology of Poly(N-methylaniline) Electrodeposited from Different Acid Solutions[J]. Synth. Met., 2003, 135–136: 417-418.

[14]

Patil R., Sanada K., Jiang X., . Mobilities of Charge Carriers in Poly(o-methylaniline) and Poly(o-methoxyaniline)[J]. Polym. J., 2004, 36(7): 549-555.

[15]

Molica A., Trevis A. A. S. Effect of the Biological Patina on the Corrosion of Stainless Steels in Natural Sea Water[J]. Acciaio. Inossidabile, 1977, 44(4): 3-13.

[16]

Liu H., Wang M., Huang Z., . Study on Biological Control of Microbiologically Induced Corrosion of Carbon Steel[J]. Materials and Corrosion, 2004, 55(5): 387-391.

[17]

Liu H., Xu L., Zheng J. Role of Corrosion Products in Biofilms in Microbiologically Induced Corrosion of Carbon Steel[J]. J. Brit. Corr., 2000, 35(2): 131-134.

[18]

Patil S., Mahajan J. R., More M. A., . Influence of Supporting Electrolyte on the Electrochemical Synthesis of Poly(omethoxyaniline) Thin Films[J]. Mater. Lett., 1999, 39(5): 298-304.

[19]

Mazur M., Tagowska M., Palys B., . Template Synthesis of Polyaniline and Poly(2-methoxyaniline) Nanotubes: Comparison of the Formation Mechanisms[J]. Electrochemistry Communications, 2003, 5: 403-407.

[20]

Mattoso L. H. C., MacDiarmid A. G., Epstein A. J. Controlled Synthesis of High Molecular Weight Polyaniline and Poly(omethoxyaniline)[J]. Synth. Met., 1994, 68(1): 1-11.

[21]

Adams P. N., Laughlin P. J., Monkman A. P. Low Temperature Synthesis of High Molecular Weight Polyaniline[J]. Polymer, 1996, 37(15): 3411-3417.

[22]

Adams P. N., Laughlin P. J., Monkman A. P. Synthesis of High Molecular Weight Polyaniline at Low Temperatures[J]. Synth. Met., 1996, 76(1–3): 157-160.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/